Skip to main content
Log in

Nano-amorphous—crystalline dual-phase design of Al80Li5Mg5Zn5Cu5 multicomponent alloy

Al80Li5Mg5Zn5Cu5多组元合金的纳米非晶-晶态双相设计

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

The design of metallic materials with high strength, high ductility, and high thermal stability has always been a long-sought goal for the materials science community. However, the trade-off between strength and ductility remains a challenge. Here, we proposed a new strategy to design and fabricate bulk amorphous—crystalline dual-phase superior alloys out of the Al80Li5Mg5Zn5Cu5 multicomponent alloy. The nano-amorphous phase revealed unexpected thermal stability during fabrication and mechanical testing above the crystallization temperature. The true fracture strength of the Al80Li5Mg5Zn5Cu5 nano-amorphous-crystal dual-phase multicomponent alloy was increased from 528 to 657 MPa, and the true strain was increased from 18% to 48%. In addition, the alloy yielded a strength 1.5 times higher than that of the commonly used high-strength aluminum alloys at 250°C. This strategy provided a new approach and concept for the design of high-performance alloys to ensure strength—plasticity balance.

摘要

设计具有高强度、 高延展性和高热稳定性的金属材料, 一直是材料科学界追求的目标. 强度和延展性之间的平衡始终面临挑战. 本文中, 我们以Al80Li5Mg5Zn5Cu5多组元合金为模型, 提出了一种设计并制造大块非晶-结晶双相优质合金的新策略. 得到的Al80Li5Mg5Zn5Cu5纳米非晶双相合金的真实断裂强度从528 MPa提高到657 MPa, 真实应变从18%提高到48%. 纳米非晶相在热制造和高于结晶温度的力学性能测试中展现出优异的热稳定性, 使得该合金在250°C时的屈服强度, 比常用的高强度铝合金高出1.5倍. 这一策略为高性能合金的设计、 制造提供了一种新的方法和概念.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Raabe D, Tasan CC, Olivetti EA. Strategies for improving the sustainability of structural metals. Nature, 2019, 575: 64–74

    Article  CAS  Google Scholar 

  2. Li Z, Pradeep KG, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength—ductility trade-off. Nature, 2016, 534: 227–230

    Article  CAS  Google Scholar 

  3. Ritchie RO. The conflicts between strength and toughness. Nat Mater, 2011, 10: 817–822

    Article  CAS  Google Scholar 

  4. Wei Y, Li Y, Zhu L, et al. Evading the strength—ductility trade-off dilemma in steel through gradient hierarchical nanotwins. Nat Commun, 2014, 5: 3580

    Article  CAS  Google Scholar 

  5. Shi P, Zhong Y, Li Y, et al. Multistage work hardening assisted by multi-type twinning in ultrafine-grained heterostructural eutectic high-entropy alloys. Mater Today, 2020, 41: 62–71

    Article  CAS  Google Scholar 

  6. Jiao ZB, Luan JH, Miller MK, et al. Precipitation mechanism and mechanical properties of an ultra-high strength steel hardened by nanoscale NiAl and Cu particles. Acta Mater, 2015, 97: 58–67

    Article  CAS  Google Scholar 

  7. Kim SH, Kim H, Kim NJ. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility. Nature, 2015, 518: 77–79

    Article  CAS  Google Scholar 

  8. Fleischer RL, Zabala RJ. Mechanical properties of diverse binary high-temperature intermetallic compounds. Metall Trans A, 1990, 21: 2709–2715

    Article  Google Scholar 

  9. Jiang S, Wang H, Wu Y, et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation. Nature, 2017, 544: 460–464

    Article  CAS  Google Scholar 

  10. Yang T, Zhao YL, Tong Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys. Science, 2018, 362: 933–937

    Article  CAS  Google Scholar 

  11. Wu G, Chan KC, Zhu L, et al. Dual-phase nanostructuring as a route to high-strength magnesium alloys. Nature, 2017, 545: 80–83

    Article  CAS  Google Scholar 

  12. He G, Eckert J, Löser W, et al. Novel Ti-base nanostructure—dendrite composite with enhanced plasticity. Nat Mater, 2003, 2: 33–37

    Article  CAS  Google Scholar 

  13. Gertsman VY, Birringer R. On the room-temperature grain growth in nanocrystalline copper. Scripta Metall Mater, 1994, 30: 577–581

    Article  CAS  Google Scholar 

  14. Wang JQ, Shen Y, Perepezko JH, et al. Increasing the kinetic stability of bulk metallic glasses. Acta Mater, 2016, 104: 25–32

    Article  CAS  Google Scholar 

  15. Singh S, Ediger MD, de Pablo JJ. Ultrastable glasses from in SiLiCo vapour deposition. Nat Mater, 2013, 12: 139–144

    Article  CAS  Google Scholar 

  16. Wu G, Balachandran S, Gault B, et al. Crystal—glass high-entropy nanocomposites with near theoretical compressive strength and large deformability. Adv Mater, 2020, 32: 2002619

    Article  CAS  Google Scholar 

  17. Wu G, Liu C, Sun L, et al. Hierarchical nanostructured aluminum alloy with ultrahigh strength and large plasticity. Nat Commun, 2019, 10: 5099

    Article  CAS  Google Scholar 

  18. Guo H, Yan PF, Wang YB, et al. Tensile ductility and necking of metallic glass. Nat Mater, 2007, 6: 735–739

    Article  CAS  Google Scholar 

  19. Jang D, Greer JR. Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses. Nat Mater, 2010, 9: 215–219

    Article  CAS  Google Scholar 

  20. Hofmann DC, Suh JY, Wiest A, et al. Designing metallic glass matrix composites with high toughness and tensile ductility. Nature, 2008, 451: 1085–1089

    Article  CAS  Google Scholar 

  21. Schawe JEK, Löffler JF. Existence of multiple critical cooling rates which generate different types of monolithic metallic glass. Nat Commun, 2019, 10: 1

    Article  CAS  Google Scholar 

  22. Gangopadhyay AK, Croat TK, Kelton KF. The effect of phase separation on subsequent crystallization in Al88Gd6La2Ni4. Acta Mater, 2000, 48: 4035–4043

    Article  CAS  Google Scholar 

  23. Li H, Wang A, Liu T, et al. Design of Fe-based nanocrystalline alloys with superior magnetization and manufacturability. Mater Today, 2021, 42: 49–56

    Article  CAS  Google Scholar 

  24. Greer AL. Confusion by design. Nature, 1993, 366: 303–304

    Article  Google Scholar 

  25. George EP, Raabe D, Ritchie RO. High-entropy alloys. Nat Rev Mater, 2019, 4: 515–534

    Article  CAS  Google Scholar 

  26. Guo S, Liu CT. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Prog Nat Sci-Mater Int, 2011, 21: 433–446

    Article  Google Scholar 

  27. Huang Z, Dai Y, Li Z, et al. Investigation on surface morphology and crystalline phase deformation of Al80Li5Mg5Zn5Cu5 high-entropy alloy by ultra-precision cutting. Mater Des, 2020, 186: 108367

    Article  CAS  Google Scholar 

  28. Li R, Li X, Ma J, et al. Sub-grain formation in Al—Li—Mg—Zn—Cu lightweight entropic alloy by ultrasonic hammering. Intermetallics, 2020, 121: 106780

    Article  CAS  Google Scholar 

  29. Udoye NE, Inegbenebor AO, Fayomi OSI. The study on improvement of aluminium alloy for engineering application: A review. Int J Mech Eng Technol, 2019, 10: 380–385

    Google Scholar 

  30. Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys. Mater Des (1980–2015), 2014, 56: 862–871

    Article  CAS  Google Scholar 

  31. Lee H, Choi JH, Jo MC, et al. Effects of SiC particulate size on dynamic compressive properties in 7075-T6 Al-SiCp composites. Mater Sci Eng-A, 2018, 738: 412–419

    Article  CAS  Google Scholar 

  32. Öz T, Karaköse E, Keskin M. Impact of beryllium additions on thermal and mechanical properties of conventionally solidified and melt-spun Al—4.5wt.%Mn—xwt.%Be (x=0, 1, 3, 5) alloys. Mater Des, 2013, 50: 399–412

    Article  CAS  Google Scholar 

  33. Zupanič F, Gspan C, Burja J, et al. Quasicrystalline and L12 precipitates in a microalloyed Al-Mn-Cu alloy. Mater Today Commun, 2020, 22: 100809

    Article  CAS  Google Scholar 

  34. Taheri-Mandarjani M, Zarei-Hanzaki A, Abedi HR. Hot ductility behavior of an extruded 7075 aluminum alloy. Mater Sci Eng-A, 2015, 637: 107–122

    Article  CAS  Google Scholar 

  35. Liu W, Zhao H, Li D, et al. Hot deformation behavior of aa7085 aluminum alloy during isothermal compression at elevated temperature. Mater Sci Eng-A, 2014, 596: 176–182

    Article  CAS  Google Scholar 

  36. Nath Verma T, Banerjee M, Nashine P. Hot compression test of aa 2014 aluminum alloy with microstructure analysis and processing maps. Mater Today-Proc, 2018, 5: 7247–7255

    Article  CAS  Google Scholar 

  37. Yang Y, Peng X, Ren F, et al. Constitutive modeling and hot deformation behavior of duplex structured Mg—Li—Al—Sr alloy. J Mater Sci Tech, 2016, 32: 1289–1296

    Article  CAS  Google Scholar 

  38. Wang CY, Wu K, Zheng MY. Hot deformation behavior of Al18B4O33w/ZK60 magnesium matrix composite. Mater Sci Eng-A, 2008, 487: 495–498

    Article  CAS  Google Scholar 

  39. He H, Yi Y, Cui J, et al. Hot deformation characteristics and processing parameter optimization of 2219 Al alloy using constitutive equation and processing map. Vacuum, 2019, 160: 293–302

    Article  CAS  Google Scholar 

  40. Hansen N. Hall—petch relation and boundary strengthening. Scripta Mater, 2004, 51: 801–806

    Article  CAS  Google Scholar 

  41. Hall EO. The deformation and ageing of mild steel: III Discussion of results. Proc Phys Soc B, 1951, 64: 747–753

    Article  Google Scholar 

  42. Petch N. The cleavage strength of polycrystals. J Iron Steel Res Int, 1953, 174: 25–28

    CAS  Google Scholar 

  43. Liu YH, Wang G, Wang RJ, et al. Super plastic bulk metallic glasses at room temperature. Science, 2007, 315: 1385–1388

    Article  CAS  Google Scholar 

  44. Li YY, Yang C, Chen WP, et al. Ultrafine-grained Ti66Nb13Cu8Ni6.8Al6.2 composites fabricated by spark plasma sintering and crystallization of amorphous phase. J Mater Res, 2009, 24: 2118–2122

    Article  CAS  Google Scholar 

  45. Li YY, Yang C, Qu SG, et al. Nucleation and growth mechanism of crystalline phase for fabrication of ultrafine-grained Ti66Nb13Cu8Ni6.8Al6.2 composites by spark plasma sintering and crystallization of amorphous phase. Mater Sci Eng-A, 2010, 528: 486–493

    Article  CAS  Google Scholar 

  46. Lee TC, Chan LC, Wu BJ. Straining behaviour in blanking process-fine blanking vs conventional blanking. J Mater Proc Tech, 1995, 48: 105–111

    Article  Google Scholar 

  47. Murayama M, Howe JM, Hidaka H, et al. Atomic-level observation of disclination dipoles in mechanically milled, nanocrystalline Fe. Science, 2002, 295: 2433–2435

    Article  CAS  Google Scholar 

  48. Ovid’ko IA. Deformation of nanostructures. Science, 2002, 295: 2386

    Article  Google Scholar 

  49. Volkert CA, Donohue A, Spaepen F. Effect of sample size on deformation in amorphous metals. J Appl Phys, 2008, 103: 083539

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Basic and Applied Research Program of Guangdong Province, China (2019B030302010), the National Natural Science Foundation of China (52122105 and 51871157), the National Key Research and Development Program of China (2018YFA0703604). Thanks to Dr. Tong Xing from Guangdong Songshan Lake Materials Laboratory for his contribution to the TEM in-situ heating experiments.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Li H and Ma J conceived the experiments. Li H, Fu J, Cai W, and Yan Y performed the experiments. Yang C analyzed the data. Li H and Ma J wrote the manuscript with contributions from other authors.

Corresponding author

Correspondence to Jiang Ma  (马将).

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supplementary information Experimental details and supporting data are available in the online version of the paper.

Hongzhen Li received his master degree in mechanical engineering from Shenzhen University (SZU) in 2020. Currently, he is studying for a PhD at South China University of Technology. His research includes metallic glass, high-entropy alloys and advanced manufacturing.

Jiang Ma received his BSc degree in materials science and engineering from Southeast University in 2009 and PhD degree from the Institute of Physics, Chinese Academy of Sciences (CAS), in 2014. He is currently a Professor at the College of Mechatronics and Control Engineering, SZU. His research includes metallic glass, high-entropy alloy, micro/nano precision forming, and functional surface fabrication and application.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Yang, C., Fu, J. et al. Nano-amorphous—crystalline dual-phase design of Al80Li5Mg5Zn5Cu5 multicomponent alloy. Sci. China Mater. 65, 1671–1678 (2022). https://doi.org/10.1007/s40843-021-1934-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-021-1934-x

Keywords

Navigation