Skip to main content
Log in

A strong Lewis acid imparts high ionic conductivity and interfacial stability to polymer composite electrolytes towards all-solid-state Li-metal batteries

强路易斯酸诱导构筑高离子电导率和界面稳定的复合电解质及其全固态锂金属电池

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

The development of high-performance solid polymer electrolytes is crucial for producing all-solid-state lithium metal batteries with high safety and high energy density. However, the low ionic conductivity of solid polymer electrolytes and their unstable electrolyte/electrode interfaces have hindered their widespread utilization. To address these critical challenges, a strong Lewis acid (aluminum fluoride (AlF3)) with dual functionality is introduced into polyethylene oxide) (PEO)-based polymer electrolyte. The AlF3 facilitates the dissociation of lithium salt, increasing the iontransfer efficiency due to the Lewis acid-base interaction; further the in-situ formation of lithium fluoride-rich interfacial layer is promoted, which suppresses the uneven lithium deposition and continuous undesired reactions between the Li metal and PEO matrix. Benefiting from our rational design, the symmetric Li/Li battery with the modified electrolyte exhibits much longer cycling stability (over 3600 h) than that of the pure PEO/lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) electrolyte (550 h). Furthermore, the all-solid-state LiFePO4 full cell with the composite electrolyte displays a much higher Coulombic efficiency (98.4% after 150 cycles) than that of the electrolyte without the AlF3 additive (63.3% after 150 cycles) at a large voltage window of 2.4–4.2 V, demonstrating the improved interface and cycling stability of solid polymer lithium metal batteries.

摘要

开发高性能固态聚合物电解质是高安全、 高比能固态锂金属电池的关键. 然而, 固态聚合物电解质的低离子电导率和不稳定的电解质/电极界面阻碍了其广泛应用. 针对上述关键问题, 本文基于聚环氧乙烷(PEO)基电解质, 引入具有双功能的氟化铝(AlF3)做为添加剂, 以提高复合电解质的离子电导率和界面稳定性. 一方面, AlF3做为一种强 路易斯酸, 在和锂盐阴离子相互作用下可以促进锂盐的解离, 同时可以固定阴离子, 从而提高锂离子传输效率; 另一方面, AlF3在电解质/电极界面可以和锂金属原位反应生成富含LiF的界面层, 从而抑制锂金属的不均匀沉积以及与PEO基体之间持续的副反应. 得益于我们的合理设计, 匹配改性后电解质的Li/Li对称电池可以稳定循环3600 h以上. 同时, 在2.4–4.2 V电压区间内, 匹配复合电解质的全固态LiFePO4全电池在150个循环之后库伦效率比没有AlF3添加剂PEO基电解质大大提升(98.4% vs. 63.3%), 匹配复合固态电解质的固态锂金属电池显示出优异的界面稳定性和循环稳定性.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. Oh P, Lee H, Park S, et al. Improvements to the overpotential of all-solid-state lithium-ion batteries during the past ten years. Adv Energy Mater, 2020, 10: 2000904

    Article  CAS  Google Scholar 

  2. Zhao Q, Stalin S, Zhao CZ, et al. Designing solid-state electrolytes for safe, energy-dense batteries. Nat Rev Mater, 2020, 5: 229–252

    Article  CAS  Google Scholar 

  3. Sun C, Liu J, Gong Y, et al. Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy, 2017, 33: 363–386

    Article  CAS  Google Scholar 

  4. Janek J, Zeier WG. A solid future for battery development. Nat Energy, 2016, 1: 1–4

    Article  Google Scholar 

  5. Cheng J, Hou G, Sun Q, et al. A novel coral-like garnet for highperformance PEO-based all solid-state batteries. Sci China Mater, 2022, 65: 364–372

    Article  CAS  Google Scholar 

  6. Zhang T, Wang Y, Song T, et al. Ammonia, a switch for controlling high ionic conductivity in lithium borohydride ammoniates. Joule, 2018, 2: 1522–1533

    Article  CAS  Google Scholar 

  7. Zhai P, Liu L, Gu X, et al. Interface engineering for lithium metal anodes in liquid electrolyte. Adv Energy Mater, 2020, 10: 2001257

    Article  CAS  Google Scholar 

  8. Zhang Q, Cao D, Ma Y, et al. Sulfide-based solid-state electrolytes: Synthesis, stability, and potential for all-solid-state batteries. Adv Mater, 2019, 31: 1901131

    Article  CAS  Google Scholar 

  9. Asano T, Sakai A, Ouchi S, et al. Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solidstate batteries. Adv Mater, 2018, 30: 1803075

    Article  CAS  Google Scholar 

  10. Liu L, Lyu J, Mo J, et al. Flexible, high-voltage, ion-conducting composite membranes with 3D aramid nanofiber frameworks for stable all-solid-state lithium metal batteries. Sci China Mater, 2020, 63: 703–718

    Article  CAS  Google Scholar 

  11. Lv F, Wang Z, Shi L, et al. Challenges and development of composite solid-state electrolytes for high-performance lithium ion batteries. J Power Sources, 2019, 441: 227175

    Article  CAS  Google Scholar 

  12. Zheng Y, Yao Y, Ou J, et al. A review of composite solid-state electrolytes for lithium batteries: Fundamentals, key materials and advanced structures. Chem Soc Rev, 2020, 49: 8790–8839

    Article  CAS  Google Scholar 

  13. Li S, Zhang SQ, Shen L, et al. Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries. Adv Sci, 2020, 7: 1903088

    Article  CAS  Google Scholar 

  14. Wang W, Yi E, Fici AJ, et al. Lithium ion conducting poly(ethylene oxide)-based solid electrolytes containing active or passive ceramic nanoparticles. J Phys Chem C, 2017, 121: 2563–2573

    Article  CAS  Google Scholar 

  15. Yue L, Ma J, Zhang J, et al. All solid-state polymer electrolytes for highperformance lithium ion batteries. Energy Storage Mater, 2016, 5: 139–164

    Article  Google Scholar 

  16. Wang C, Wang T, Wang L, et al. Differentiated lithium salt design for multilayered PEO electrolyte enables a high-voltage solid-state lithium metal battery. Adv Sci, 2019, 6: 1901036

    Article  CAS  Google Scholar 

  17. Long L, Wang S, Xiao M, et al. Polymer electrolytes for lithium polymer batteries. J Mater Chem A, 2016, 4: 10038–10069

    Article  CAS  Google Scholar 

  18. Xue Z, He D, Xie X. Poly(ethylene oxide)-based electrolytes for lithiumion batteries. J Mater Chem A, 2015, 3: 19218–19253

    Article  CAS  Google Scholar 

  19. Wan J, Xie J, Kong X, et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nat Nanotechnol, 2019, 14: 705–711

    Article  CAS  Google Scholar 

  20. Zagórski J, López del Amo JM, Cordill MJ, et al. Garnet-polymer composite electrolytes: New insights on local Li-ion dynamics and electrodeposition stability with Li metal anodes. ACS Appl Energy Mater, 2019, 2: 1734–1746

    Article  CAS  Google Scholar 

  21. Zhang Y, Zuo TT, Popovic J, et al. Towards better Li metal anodes: Challenges and strategies. Mater Today, 2020, 33: 56–74

    Article  CAS  Google Scholar 

  22. Lai C, Shu C, Li W, et al. Stabilizing a lithium metal battery by an in situ Li2S-modified interfacial layer via amorphous-sulfide composite solid electrolyte. Nano Lett, 2020, 20: 8273–8281

    Article  CAS  Google Scholar 

  23. Zhang J, Zhao N, Zhang M, et al. Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide. Nano Energy, 2016, 28: 447–454

    Article  CAS  Google Scholar 

  24. Huo H, Chen Y, Luo J, et al. Rational design of hierarchical “ceramic-in-polymer” and “polymer-in-ceramic” electrolytes for dendrite-free solid-state batteries. Adv Energy Mater, 2019, 9: 1804004

    Article  CAS  Google Scholar 

  25. Christie AM, Lilley SJ, Staunton E, et al. Increasing the conductivity of crystalline polymer electrolytes. Nature, 2005, 433: 50–53

    Article  CAS  Google Scholar 

  26. Wang C, Yang Y, Liu X, et al. Suppression of lithium dendrite formation by using LAGP-PEO (LiTFSI) composite solid electrolyte and lithium metal anode modified by PEO (LiTFSI) in all-solid-state lithium batteries. ACS Appl Mater Interfaces, 2017, 9: 13694–13702

    Article  CAS  Google Scholar 

  27. Chen F, Yang D, Zha W, et al. Solid polymer electrolytes incorporating cubic Li7La3Zr2O12 for all-solid-state lithium rechargeable batteries. Electrochim Acta, 2017, 258: 1106–1114

    Article  CAS  Google Scholar 

  28. Zhao CZ, Zhang XQ, Cheng XB, et al. An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes. Proc Natl Acad Sci USA, 2017, 114: 11069–11074

    Article  CAS  Google Scholar 

  29. Li Y, Zhou W, Chen X, et al. Mastering the interface for advanced all-solid-state lithium rechargeable batteries. Proc Natl Acad Sci USA, 2016, 113: 13313–13317

    Article  CAS  Google Scholar 

  30. Renna LA, Blanc FG, Giordani V. Interface modification of lithium metal anode and solid-state electrolyte with gel electrolyte. J Electrochem Soc, 2020, 167: 070542

    Article  Google Scholar 

  31. Ao X, Wang X, Tan J, et al. Nanocomposite with fast Li+ conducting percolation network: Solid polymer electrolyte with Li+ non-conducting filler. Nano Energy, 2021, 79: 105475–105485

    Article  CAS  Google Scholar 

  32. Chen N, Dai Y, Xing Y, et al. Biomimetic ant-nest ionogel electrolyte boosts the performance of dendrite-free lithium batteries. Energy Environ Sci, 2017, 10: 1660–1667

    Article  CAS  Google Scholar 

  33. Lu Y, Tikekar M, Mohanty R, et al. Stable cycling of lithium metal batteries using high transference number electrolytes. Adv Energy Mater, 2015, 5: 1402073

    Article  CAS  Google Scholar 

  34. Sheng O, Jin C, Luo J, et al. Mg2B2O5 nanowire enabled multifunctional solid-state electrolytes with high ionic conductivity, excellent mechanical properties, and flame-retardant performance. Nano Lett, 2018, 18: 3104–3112

    Article  CAS  Google Scholar 

  35. Zhao Y, Wang L, Zhou Y, et al. Solid polymer electrolytes with high conductivity and transference number of Li ions for Li-based rechargeable batteries. Adv Sci, 2021, 8: 2003675

    Article  CAS  Google Scholar 

  36. Tu Z, Choudhury S, Zachman MJ, et al. Fast ion transport at solid-solid interfaces in hybrid battery anodes. Nat Energy, 2018, 3: 310–316

    Article  CAS  Google Scholar 

  37. Liu Y, Lin D, Yuen PY, et al. An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes. Adv Mater, 2017, 29: 1605531

    Article  CAS  Google Scholar 

  38. Wang Z, Shen L, Deng S, et al. 10 μm-thick high-strength solid polymer electrolytes with excellent interface compatibility for flexible all-solidstate lithium-metal batteries. Adv Mater, 2021, 33: 2100353

    Article  CAS  Google Scholar 

  39. Fang R, Xu B, Grundish NS, et al. Li2S6-integrated PEO-based polymer electrolytes for all-solid-state lithium-metal batteries. Angew Chem, 2021, 133: 17842–17847

    Article  Google Scholar 

  40. Santiago A, Judez X, Castillo J, et al. Improvement of lithium metal polymer batteries through a small dose of fluorinated salt. J Phys Chem Lett, 2020, 11: 6133–6138

    Article  CAS  Google Scholar 

  41. Eshetu GG, Judez X, Li C, et al. Ultrahigh performance all solid-state lithium sulfur batteries: Salt anion’s chemistry-induced anomalous synergistic effect. J Am Chem Soc, 2018, 140: 9921–9933

    Article  CAS  Google Scholar 

  42. Wang H, Lin D, Liu Y, et al. Ultrahigh-current density anodes with interconnected Li metal reservoir through overlithiation of mesoporous AlF3 framework. Sci Adv, 2017, 3: 1701301

    Article  CAS  Google Scholar 

  43. Miao X, Di H, Ge X, et al. AlF3-modified anode-electrolyte interface for effective Na dendrites restriction in NaSICON-based solid-state electrolyte. Energy Storage Mater, 2020, 30: 170–178

    Article  Google Scholar 

  44. Jones JP, Hennessy J, Billings KJ, et al. Communication—Atomic layer deposition of aluminum fluoride for lithium metal anodes. J Electrochem Soc, 2020, 167: 060502

    Article  CAS  Google Scholar 

  45. Liu Q, Zhou D, Shanmukaraj D, et al. Self-healing Janus interfaces for high-performance LAGP-based lithium metal batteries. ACS Energy Lett, 2020, 5: 1456–1464

    Article  CAS  Google Scholar 

  46. Liu Y, Yu P, Wu Y, et al. The DFT-ReaxFF hybrid reactive dynamics method with application to the reductive decomposition reaction of the TFSI and DOL electrolyte at a lithium-metal anode surface. J Phys Chem Lett, 2021, 12: 1300–1306

    Article  CAS  Google Scholar 

  47. Chen J, Li Q, Pollard TP, et al. Electrolyte design for Li metal-free Li batteries. Mater Today, 2020, 39: 118–126

    Article  CAS  Google Scholar 

  48. Yu Y, Zhang B, He YB, et al. Mechanisms of capacity degradation in reduced graphene oxide/α-MnO2 nanorod composite cathodes of Li-air batteries. J Mater Chem A, 2013, 1: 1163–1170

    Article  CAS  Google Scholar 

  49. Yu HL, Zhao JN, Ben LB, et al. Dendrite-free lithium deposition with self-aligned columnar structure in a carbonate-ether mixed electrolyte. ACS Energy Lett, 2017, 2: 1296–1302

    Article  CAS  Google Scholar 

  50. Ma J, Liu Z, Chen B, et al. A strategy to make high voltage LiCoO2 compatible with polyethylene oxide electrolyte in all-solid-state lithium ion batteries. J Electrochem Soc, 2017, 164: A3454–A3461

    Article  CAS  Google Scholar 

  51. Xu F, Deng S, Guo Q, et al. Quasi-ionic liquid enabling single-phase poly(vinylidene fluoride)-based polymer electrolytes for solid-state LiNi0.6Co0.2Mn0.2O2∥Li batteries with rigid-flexible coupling interphase. Small Methods, 2021, 5: 2100262

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the research fund of Shenzhen Science and Technology Innovation Committee (SGDX20201103093600003), the University of Macau, Macau SAR (MYRG2018-00079-IAPME and MYRG2019-00115-IAPME), the Science and Technology Development Fund, Macau SAR (0092/2019/A2, 0059/2018/A2, and 009/2017/AMJ), the National Thousand Young Talent plan, and the National Natural Science Foundation of China (21875040 & 21905051).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Wang L, Hong G and Tang Y designed the research and wrote the manuscript. Hong G and Tang Y supervised the project and analyzed the data. Wang L, Zhong Y, and Wen Z carried out the experiments and discussions. Li C, Zhao J, Ge M, Zhou P and Zhang Y analyzed the data and refined the manuscript. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Yuxin Tang  (汤育欣) or Guo Hong  (洪果).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Experimental details and supporting data are available in the online version of the paper.

Litong Wang is currently a PhD candidate at the Institute of Applied Physics and Materials Engineering, University of Macau. His research interest focuses on the development of solid-state lithium metal batteries/fast charging electrode materials for electrochemical energy conversion and storage systems.

Yuxin Tang is a Professor at the College of Chemical Engineering, Fuzhou University. He obtained his BSc and MSc degrees from Nanjing University of Aeronautics and Astronautics in 2006 and 2009, respectively, and graduated from Nanyang Technological University (NTU) with a PhD degree in materials science (2013). After postdoctoral training in NTU, he joined the Institute of Applied Physics and Materials Engineering, University of Macau as an assistant professor in 2018. His research interests are the development of extreme energy storage devices and realtime electrochemical reaction monitoring techniques.

Guo Hong received his PhD degree in physical chemistry from Peking University in 2011. He was a postdoctoral researcher at the City University of Hong Kong from 2011 to 2013, and a postdoctoral researcher at Swiss Federal Institute of Technology, Switzerland from 2013 to 2016. He joined BTR New Energy Materials Inc., China as the deputy director of the research center in 2016. Currently, he is an assistant professor at the Institute of Applied Physics and Materials Engineering, and Faculty of Science and Technology, University of Macau. His research interests focus on low-dimensional materials, flexible devices, energy storage and conversion.

Supplementary Information

40843_2021_1908_MOESM1_ESM.pdf

A Strong Lewis Acid Imparts High Ionic Conductivity and Interfacial Stability to Polymer Composite Electrolytes towards All Solid-State Li Metal Batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhong, Y., Wen, Z. et al. A strong Lewis acid imparts high ionic conductivity and interfacial stability to polymer composite electrolytes towards all-solid-state Li-metal batteries. Sci. China Mater. 65, 2179–2188 (2022). https://doi.org/10.1007/s40843-021-1908-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-021-1908-x

Keywords

Navigation