Skip to main content

The role of average atomic volume in predicting negative thermal expansion: The case of REFe(CN)6

平均原子晶格体积在预测负热膨胀材料中的作用: 以REFe(CN)6 为例

摘要

面对高精尖仪器或设备的热膨胀控制的需求, 探索新的负热膨胀材料显得尤为重要. 本文采用“平均原子晶格体积”概念预测各向异性新的负热膨胀材料体系, 据此发现了REFe(CN)6 (RE = La, Sm, Ho,Lu) 负热膨胀材料家族. 我们采用原位中子粉末衍射(NPD)、X射线吸收精细结构谱(EXAFS)和第一性原理计算揭示了其负热膨胀来源于低频声子振动模式中的CN原子的横向热振动, 进一步发现“平均原子晶格体积”越大, 其对应的低频声子模式频率越低, 格林艾森常数越负,CN原子的横向热振动越强. 本工作为定性预测负热膨胀材料提供了新的方法, 对热膨胀控制与设计具有重要意义.

References

  1. 1

    Mary TA, Evans JSO, Vogt T, et al. Negative thermal expansion from 0.3 to 1050 Kelvin in ZrW2O8. Science, 1996, 272: 90–92

    CAS  Article  Google Scholar 

  2. 2

    Attfield JP. A fresh twist on shrinking materials. Nature, 2011, 480: 465–466

    CAS  Article  Google Scholar 

  3. 3

    Zhang Y, Chen B, Guan D, et al. Thermal-expansion offset for high-performance fuel cell cathodes. Nature, 2021, 591: 246–251

    CAS  Article  Google Scholar 

  4. 4

    Yang Y, Lin Z, Li R, et al. Thermal expansion coefficient of monolayer MoS2 determined using temperature-dependent Raman spectroscopy combined with finite element simulations. Microstructures, 2021, doi: https://doi.org/10.20517/microstructures.2021.02

  5. 5

    Chen J, Hu L, Deng J, et al. Negative thermal expansion in functional materials: Controllable thermal expansion by chemical modifications. Chem Soc Rev, 2015, 44: 3522–3567

    CAS  Article  Google Scholar 

  6. 6

    Song Y, Shi N, Deng S, et al. Negative thermal expansion in magnetic materials. Prog Mater Sci, 2021, 121: 100835

    CAS  Article  Google Scholar 

  7. 7

    Goodwin AL, Calleja M, Conterio MJ, et al. Colossal positive and negative thermal expansion in the framework material Ag3[Co(CN)6]. Science, 2008, 319: 794–797

    CAS  Article  Google Scholar 

  8. 8

    Chen J, Gao Q, Sanson A, et al. Tunable thermal expansion in framework materials through redox intercalation. Nat Commun, 2017, 8: 14441

    CAS  Article  Google Scholar 

  9. 9

    Greve BK, Martin KL, Lee PL, et al. Pronounced negative thermal expansion from a simple structure: Cubic ScF3. J Am Chem Soc, 2010, 132: 15496–15498

    CAS  Article  Google Scholar 

  10. 10

    Wei Z, Tan L, Cai G, et al. Colossal pressure-induced softening in scandium fluoride. Phys Rev Lett, 2020, 124: 255502

    CAS  Article  Google Scholar 

  11. 11

    Wang C, Chu L, Yao Q, et al. Tuning the range, magnitude, and sign of the thermal expansion in intermetallic Mn3(Zn, M)xN (M = Ag, Ge). Phys Rev B, 2012, 85: 220103–220107

    Article  Google Scholar 

  12. 12

    Azuma M, Chen WT, Seki H, et al. Colossal negative thermal expansion in BiNiO3 induced by intermetallic charge transfer. Nat Commun, 2011, 2: 347

    Article  Google Scholar 

  13. 13

    McLaughlin AC, Sher F, Attfield JP. Negative lattice expansion from the superconductivity-antiferromagnetism crossover in ruthenium copper oxides. Nature, 2005, 436: 829–832

    CAS  Article  Google Scholar 

  14. 14

    Schneider C, Bodesheim D, Ehrenreich MG, et al. Tuning the negative thermal expansion behavior of the metal-organic framework Cu3BTC2 by retrofitting. J Am Chem Soc, 2019, 141: 10504–10509

    CAS  Article  Google Scholar 

  15. 15

    Wu Y, Peterson VK, Luks E, et al. Interpenetration as a mechanism for negative thermal expansion in the metal-organic framework Cu3(btb)2 (MOF-14). Angew Chem, 2014, 126: 5275–5278

    Article  Google Scholar 

  16. 16

    Zhou HL, Zhang YB, Zhang JP, et al. Supramolecular-jack-like guest in ultramicroporous crystal for exceptional thermal expansion behaviour. Nat Commun, 2015, 6: 6917

    CAS  Article  Google Scholar 

  17. 17

    Evans JSO. Negative thermal expansion materials. Jpn J Appl Phys, 2000, 39: 535

    CAS  Article  Google Scholar 

  18. 18

    Takenaka K. Negative thermal expansion materials: Technological key for control of thermal expansion. Sci Tech Adv Mater, 2012, 13: 013001

    Article  Google Scholar 

  19. 19

    Dove MT, Fang H. Negative thermal expansion and associated anomalous physical properties: Review of the lattice dynamics theoretical foundation. Rep Prog Phys, 2016, 79: 066503

    Article  Google Scholar 

  20. 20

    Mittal R, Gupta MK, Chaplot SL. Phonons and anomalous thermal expansion behaviour in crystalline solids. Prog Mater Sci, 2018, 92: 360–445

    CAS  Article  Google Scholar 

  21. 21

    Attfield JP. Mechanisms and materials for NTE. Front Chem, 2018, 6: 371

    Article  Google Scholar 

  22. 22

    Takenaka K. Progress of research in negative thermal expansion materials: Paradigm shift in the control of thermal expansion. Front Chem, 2018, 6: 267

    Article  Google Scholar 

  23. 23

    Liang E, Sun Q, Yuan H, et al. Negative thermal expansion: Mechanisms and materials. Front Phys, 2021, 16: 53302

    Article  Google Scholar 

  24. 24

    Takenaka K, Okamoto Y, Shinoda T, et al. Colossal negative thermal expansion in reduced layered ruthenate. Nat Commun, 2017, 8: 1–7

    Article  Google Scholar 

  25. 25

    Wang Q, Jackson JA, Ge Q, et al. Lightweight mechanical metamaterials with tunable negative thermal expansion. Phys Rev Lett, 2016, 117: 175901

    Article  Google Scholar 

  26. 26

    Li WH, Wu SY, Yang CC, et al. Thermal contraction of Au nano-particles. Phys Rev Lett, 2002, 89: 135504

    Article  Google Scholar 

  27. 27

    Goodwin AL. The ins and outs of thermal expansion. Nat Nanotech, 2008, 3: 711–712

    CAS  Article  Google Scholar 

  28. 28

    Gao Q, Wang J, Sanson A, et al. Discovering large isotropic negative thermal expansion in framework compound AgB(CN)4via the concept of average atomic volume. J Am Chem Soc, 2020, 142: 6935–6939

    CAS  Article  Google Scholar 

  29. 29

    Hibble SJ, Chippindale AM, Marelli E, et al. Local and average structure in zinc cyanide: Toward an understanding of the atomistic origin of negative thermal expansion. J Am Chem Soc, 2013, 135: 16478–16489

    CAS  Article  Google Scholar 

  30. 30

    Goodwin AL, Chapman KW, Kepert CJ. Guest-dependent negative thermal expansion in nanoporous Prussian blue analogues MIIPtIV(CN)6×x{H2O} (0 ≤ x ≤ 2; M = Zn, Cd). J Am Chem Soc, 2005, 127: 17980–17981

    CAS  Article  Google Scholar 

  31. 31

    Duyker SG, Peterson VK, Kearley GJ, et al. Negative thermal expansion in LnCo(CN)6 (Ln = La, Pr, Sm, Ho, Lu, Y): Mechanisms and compositional trends. Angew Chem Int Ed, 2016, 52: 5266–5270

    Article  Google Scholar 

  32. 32

    Gao Q, Sun Y, Shi N, et al. Large isotropic negative thermal expansion in water-free Prussian blue analogues of ScCo(CN)6. Scripta Mater, 2020, 187: 119–124

    CAS  Article  Google Scholar 

  33. 33

    Gao Q, Chen J, Sun Q, et al. Switching between giant positive and negative thermal expansions of a YFe(CN)6-based Prussian blue analogue induced by guest species. Angew Chem Int Ed, 2017, 56: 9023–9028

    CAS  Article  Google Scholar 

  34. 34

    Kronenburg MJ. Atomic displacement parameters and anisotropic thermal ellipsoid lengths and angles. Acta Crystlogr Found Crystlogr, 2004, 60: 250–256

    CAS  Article  Google Scholar 

  35. 35

    Sanson A. Toward an understanding of the local origin of negative thermal expansion in ZrW2O8: Limits and inconsistencies of the tent and rigid unit mode models. Chem Mater, 2014, 26: 3716–3720

    CAS  Article  Google Scholar 

  36. 36

    Gao Q, Shi X, Venier A, et al. Effect of H2O molecules on thermal expansion of TiCo(CN)6. Inorg Chem, 2020, 59: 14852–14855

    CAS  Article  Google Scholar 

  37. 37

    Shi N, Sanson A, Gao Q, et al. Strong negative thermal expansion in a low-cost and facile oxide of Cu2P2O7. J Am Chem Soc, 2020, 142: 3088–3093

    CAS  Article  Google Scholar 

  38. 38

    Dalba G, Fornasini P. EXAFS Debye-Waller factor and thermal vibrations of crystals. J Synchrotron Rad, 1997, 4: 243–255

    CAS  Article  Google Scholar 

  39. 39

    Sanson A. On the switching between negative and positive thermal expansion in framework materials. Mater Res Lett, 2019, 7: 412–417

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22071221, 21905252, 21825102 and 11774078), the Natural Science Foundation of Henan Province (212300410086) and the Innovation Scientists and Technicians Troop Construction Projects of Henan Province (10094100510025). All calculations were supported by the National Supercomputing Center in Zhengzhou. ELETTRA Synchrotron is acknowledged for providing beamtime at the XAFS beamline (Experiment n. 20185177). We thank Luca Olivi and Simone Pollastri for technical assistance.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Qilong Gao or Jun Chen.

Additional information

Author contributions

Gao Q and Chen J conceived the idea and designed the experiments. Gao Q prepared the samples and performed the measurements. Sanson A analyzed and discussed the data of the X-ray absorption fine structure experiments. Sun Q performed density functional theory (DFT) calculations. Huang Q assisted in the neutron powder diffraction experiments. All authors contributed to the discussions. Gao Q and Chen J wrote the manuscript with help for the revision from all coauthors.

Conflict of interest

The authors declare that they have no conflict of interest.

Qilong Gao is currently an associate professor at Zhengzhou university (ZZU). He received his PhD degree from the Department of Physical Chemistry, University of Science and Technology Beijing (USTB). He received the award of the Excellent Youth Foundation of Henan province in 2020. Currently, he concentrates on exploring the NTE mechanism, controlling thermal expansion, and finding new NTE materials, such as Prussian blue analogues, oxides, cyanides and metal-organic frameworks by means of synchrotron radiation technology.

Jun Chen is currently a full professor at USTB, China. He received his PhD degree in Metallurgical Physical Chemistry from USTB in 2007. In 2008–2009, he was financially supported by the Alexander von Humboldt Fellowship for the research in the field of electrical ceramics at TU-Darmstadt, Germany. He visited the Structures Laboratory of the Tokyo Institute of Technology, Japan, as a foreign guest professor in 2015, and visited the Department of Physics and Astronomy of University of Padova, Italy as a visiting scientist in 2018. His current research interests include crystal structures, correlations with physical or chemical properties, and new materials design for ferroelectric, piezoelectric, magnetic, and negative thermal expansion solids.

Supporting Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gao, Q., Sun, Q., Venier, A. et al. The role of average atomic volume in predicting negative thermal expansion: The case of REFe(CN)6. Sci. China Mater. (2021). https://doi.org/10.1007/s40843-021-1797-3

Download citation