Skip to main content

High- and low-temperature dual ferroelasticity in a new hybrid crystal: (Me3NCH2CH2OH)4[Ni(NCS)6]

一例具有高低温双铁弹性的新型杂化晶体: (Me3NCH2CH2OH)4[Ni(NCS)6]

#摘要

本文报道了一例具有反XeF4结构的新型杂化晶体(Me3NCH2-CH2OH)4[Ni(NCS)6], 其分子组分的较复杂有序-无序转变使得该化合 物在269和360 K发生两步可逆相变. 这两步相变伴随着P21/nP4/mncBmab的空间群变化, 即分别属于正常的降温对称性破缺和反常的升温 对称性破缺现象, 因此使得该化合物可在低温和高温均展现出铁弹性 (自发极化强度分别为0.0603和0.0073). 这种不同寻常的高低温双铁弹 性的发现和研究, 有助于加深对反常对称性破缺相变的理解, 并为今后 在分子杂化晶体中探索高温铁性材料提供重要线索.

References

  1. 1

    Fesenko EG, Gavrilyatchenko VG, Semenchev AF. Domain structure of multiaxial ferroelectric crystals. Ferroelectrics, 1989, 100: 195–207

    CAS  Article  Google Scholar 

  2. 2

    Wadhawan VK. Ferroelasticity. Bull Mater Sci, 1984, 6: 733–753

    CAS  Article  Google Scholar 

  3. 3

    Sapriel J. Domain-wall orientations in ferroelastics. Phys Rev B, 1975, 12: 5128–5140

    CAS  Article  Google Scholar 

  4. 4

    Salje EKH. Ferroelastic materials. Annu Rev Mater Res, 2012, 42: 265–283

    CAS  Article  Google Scholar 

  5. 5

    Aizu K, Kumada A, Yumoto H, et al. Simultaneous ferroelectricity and ferroelasticity of Gd2(MoO4)3. J Phys Soc Jpn, 1969, 27: 511

    CAS  Article  Google Scholar 

  6. 6

    Brixner LH, Bierstedt PE, Jaep WF, et al. α-Pb3(PO4)2—A pure ferroelastic. Mater Res Bull, 1973, 8: 497–503

    CAS  Article  Google Scholar 

  7. 7

    Fillingham PJ. Domain structure and twinning in crystals of vanadium dioxide. J Appl Phys, 1967, 38: 4823–4829

    CAS  Article  Google Scholar 

  8. 8

    Hill C, Weber MC, Lehmann J, et al. Role of the ferroelastic strain in the optical absorption of BiVO4. APL Mater, 2020, 8: 081108

    CAS  Article  Google Scholar 

  9. 9

    An Z, Xie S, Zhang N, et al. Ferroelastic domain hierarchy in the intermediate state of PbZr0.98Ti0.02O3 single crystal. APL Mater, 2021, 9: 030702

    CAS  Article  Google Scholar 

  10. 10

    Xu WJ, Du ZY, Zhang WX, et al. Structural phase transitions in perovskite compounds based on diatomic or multiatomic bridges. CrystEngComm, 2016, 18: 7915–7928

    CAS  Article  Google Scholar 

  11. 11

    Wang SS, Chen XX, Huang B, et al. Unique freezing dynamics of flexible guest cations in the first molecular postperovskite ferroelectric: (C5H13NBr)[Mn(N(CN)2)3]. CCS Chem, 2019, 1: 448–454

    CAS  Article  Google Scholar 

  12. 12

    Xu WJ, Zeng Y, Yuan W, et al. A large room-temperature entropy change in a new hybrid ferroelastic with an unconventional bond-switching mechanism. Chem Commun, 2020, 56: 10054–10057

    CAS  Article  Google Scholar 

  13. 13

    Liu DX, Xie KP, Zhang WX, et al. Structural insights into a new family of three-dimensional thiocyanate-bridged molecular double perovskites. CrystEngComm, 2021, 23: 2208–2214

    CAS  Article  Google Scholar 

  14. 14

    Zhang SY, Shu X, Zeng Y, et al. Molecule-based nonlinear optical switch with highly tunable on-off temperature using a dual solid solution approach. Nat Commun, 2020, 11: 2752

    CAS  Article  Google Scholar 

  15. 15

    Chen Y, Zhu T, Xiong Z, et al. An organic-inorganic hybrid birefringent material with diverse functional groups. Chem Commun, 2021, 57: 6668–6671

    CAS  Article  Google Scholar 

  16. 16

    Kou B, Zhang W, Ji C, et al. Tunable optical absorption in lead-free perovskite-like hybrids by iodide management. Chem Commun, 2019, 55: 14174–14177

    CAS  Article  Google Scholar 

  17. 17

    Aizu K. Determination of the state parameters and formulation of spontaneous strain for ferroelastics. J Phys Soc Jpn, 1970, 28: 706–716

    CAS  Article  Google Scholar 

  18. 18

    He L, Zhou L, Shi PP, et al. One-dimensional cadmium thiocyanate perovskite ferroelastics tuned by halogen substitution. Chem Mater, 2019, 31: 10236–10242

    CAS  Article  Google Scholar 

  19. 19

    Cao YJ, Zhou L, Shi PP, et al. H/F substituted perovskite compounds with above-room-temperature ferroelasticity: [(CH3)4P][Cd(SCN)3] and [(CH3)3PCH2F][Cd(SCN)3]. Chem Commun, 2019, 55: 8418–8421

    CAS  Article  Google Scholar 

  20. 20

    Hu WH, Xu WJ, Meng QR, et al. Switching hydrogen bonds to readily interconvert two room-temperature long-term stable crystalline polymorphs in chiral molecular perovskites. Chem Commun, 2019, 55: 11555–11558

    CAS  Article  Google Scholar 

  21. 21

    Xu WJ, Li PF, Tang YY, et al. A molecular perovskite with switchable coordination bonds for high-temperature multiaxial ferroelectrics. J Am Chem Soc, 2017, 139: 6369–6375

    CAS  Article  Google Scholar 

  22. 22

    Ye H, Hu WH, Xu WJ, et al. Two enantiomeric perovskite ferroelectrics with a high Tc raised by inserting intermolecular hydrogen bonds. APL Mater, 2021, 9: 031102

    CAS  Article  Google Scholar 

  23. 23

    Xu WJ, Romanyuk K, Zeng Y, et al. Statics and dynamics of ferroelectric domains in molecular multiaxial ferroelectric (Me3NOH)2-[KCo(CN)6]. J Mater Chem C, 2021, 9: 10741–10748

    CAS  Article  Google Scholar 

  24. 24

    Liu HY, Zhang HY, Chen XG, et al. Molecular design principles for ferroelectrics: Ferroelectrochemistry. J Am Chem Soc, 2020, 142: 15205–15218

    CAS  Article  Google Scholar 

  25. 25

    Jona F, Shirane G. Ferroelectric Crystals. Oxford: Pergamon, 1962, 108

    Google Scholar 

  26. 26

    Zhang J, Yao WW, Sang L, et al. Multi-step structural phase transitions with novel symmetry breaking and inverse symmetry breaking characteristics in a [Ag4I6]2− cluster hybrid crystal. Chem Commun, 2020, 56: 462–465

    CAS  Article  Google Scholar 

  27. 27

    Szafrański M. Reverse group-subgroup relation at the ferroelastic phase transition in [(C2H5)4N][(CH3)4N]MnBr4. Cryst Growth Des, 2016, 16: 3771–3776

    Article  Google Scholar 

  28. 28

    Miao LP, Chu LL, Han XB, et al. A ferroelastic molecular rotor crystal showing inverse temperature symmetry breaking. Inorg Chem Front, 2021, 8: 2809–2816

    CAS  Article  Google Scholar 

  29. 29

    Yuan W, Zeng Y, Tan YY, et al. A new ferroelastic hybrid material with a large spontaneous strain: (Me3NOH)2[ZnCl4]. Chem Commun, 2019, 55: 8983–8986

    CAS  Article  Google Scholar 

  30. 30

    Cliffe MJ, Goodwin AL. PASCal: A principal axis strain calculator for thermal expansion and compressibility determination. J Appl Crystlogr, 2012, 45: 1321–1329

    CAS  Article  Google Scholar 

  31. 31

    Carpenter MA, Salje EKH, Graeme-Barber A. Spontaneous strain as a determinant of thermodynamic properties for phase transitions in minerals. Eur J Mineral, 1998, 10: 621–691

    CAS  Article  Google Scholar 

  32. 32

    Jia ZH, Liu JY, Liu DX, et al. Four-step thermosensitive dielectric response arising from motionable low-symmetry ammonium confined in deformable supramolecular cages. J Mater Chem C, 2021, 9: 8076–8082

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22071273 and 21821003), and the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2017BT01C161).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wei-Xiong Zhang.

Additional information

Author contributions

Zhang WX, Chen XM and Liu DX conceived the idea, designed the experiments and co-wrote the manuscript; Liu DX engineered the samples; Liu DX, Chen XX and Ye ZM performed the experiments; all authors contributed to the general discussion.

Conflict of interest

The authors declare that they have no conflict of interest.

De-Xuan Liu was born in 1996 and obtained his BSc degree in 2018 at Sun Yat-Sen University (SYSU). He is a PhD candidate in inorganic chemistry at SYSU. His research is focused on functional hybrid compounds.

Wei-Xiong Zhang obtained his BSc degree in 2004 and PhD degree in 2009 at SYSU, and was a JSPS (Japan Society for the Promotion of Science) postdoc at Tohoku University from 2010 to 2012. He joined SYSU in 2012, and became a professor in 2018. His current research interest is in crystal engineering of multi-component dense crystals, especially the structural-phase-transition functional crystals and energetic crystals.

Supporting Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, DX., Chen, XX., Ye, ZM. et al. High- and low-temperature dual ferroelasticity in a new hybrid crystal: (Me3NCH2CH2OH)4[Ni(NCS)6]. Sci. China Mater. (2021). https://doi.org/10.1007/s40843-021-1794-1

Download citation