Skip to main content

Low-field-induced spin-glass behavior and controllable anisotropy in nanoparticle assemblies at a liquid-air interface



Stacking nanoscale-building blocks into one-dimensional (1D) assemblies with collective physical properties is a frontier in designing materials. However, the formation of 1D arrays using weak magnetic fields and an in-depth understanding of their magnetic properties remain challenging. Here, low-dimensional assemblies of iron oxide nanocubes with a disordered arrangement are fabricated at the diethylene-glycol/air interface in the presence of assembly fields (0/1/3/5/30/50 mT). Ring-shaped assemblies gradually transform as the assembly field increases from 0 to 50 mT, first to a porous network consisting of elongated assemblies and then to an aligned array of filaments, in which the aligned filaments are formed when the assembly field is ≥3 mT and duration t > 14 min. Spin-glass characteristics and static (dynamic) anisotropy factors ∼2(3) are achieved by tuning the strength of the assembly field. In the presence of a relatively weak assembly field, the interplay between dipolar interactions and disorder with respect to magnetic easy axis alignment leads to spin-glass characteristics. The alignment of the magnetic easy axes and the strength of the dipolar interactions increase with increasing assembly field, resulting in the disappearance of spin-glass characteristics and enhancement of the magnetic anisotropy. This study presents a strategy for obtaining magnetic assemblies with spin-glass behavior and controllable anisotropy while shedding light on the magnetic interactions of low-dimensional assemblies.


利用纳米尺度结构单元堆积成具有丰富物理性能的一维(1D)组装体, 是材料设计的研究前沿. 然而, 弱磁场诱导1D阵列的制备及其磁性能机制的揭示仍然具有挑战性. 本文采用强度不同的组装场(0/1/3/5/30/50 mT), 在二甘醇–空气界面上制备了由无序四氧化三铁纳米立方体组成的低维组装体. 随着组装场从0增长到50 mT, 环形组装体先变为细长多孔网状, 再逐步变为细丝阵列, 其中细丝阵列的合成条件为组装场≥3 mT且施加组装场时间t>14 min. 通过调控组装场强度可得到自旋玻璃特性和静(动)各向异性∼2(3). 在弱组装场下磁偶极和无序排列易磁化轴之间相互作用导致自旋玻璃特性, 进一步增大组装场将加强磁偶极作用和易磁化轴排列, 导致自旋玻璃特性消失和强各向异性. 本研究不仅提出了一种制备自旋玻璃和可控各向异性组装体的策略, 还为理解低维组装磁相互作用提供了新思路.


  1. 1

    Pankhurst QA, Connolly J, Jones SK, et al. Applications of magnetic nanoparticles in biomedicine. J Phys D-Appl Phys, 2003, 36: R167–R181

    CAS  Article  Google Scholar 

  2. 2

    Pankhurst QA, Thanh NTK, Jones SK, et al. Progress in applications of magnetic nanoparticles in biomedicine. J Phys D-Appl Phys, 2009, 42: 224001

    Article  CAS  Google Scholar 

  3. 3

    Tian B, Liao X, Svedlindh P, et al. Ferromagnetic resonance biosensor for homogeneous and volumetric detection of DNA. ACS Sens, 2018, 3: 1093–1101

    CAS  Article  Google Scholar 

  4. 4

    Issadore D, Park YI, Shao H, et al. Magnetic sensing technology for molecular analyses. Lab Chip, 2014, 14: 2385–2397

    CAS  Article  Google Scholar 

  5. 5

    Miltenyi S, Müller W, Weichel W, et al. High gradient magnetic cell separation with macs. Cytometry, 1990, 11: 231–238

    CAS  Article  Google Scholar 

  6. 6

    Dieckhoff J, Kaul MG, Mummert T, et al. Magnetic particle imaging of liver tumors in small animal models. Int J Mag Part Imag, 2017, 3: 1707003

    Google Scholar 

  7. 7

    Felfoul O, Mohammadi M, Taherkhani S, et al. Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nat Nanotech, 2016, 11: 941–947

    CAS  Article  Google Scholar 

  8. 8

    Attaluri A, Kandala SK, Wabler M, et al. Magnetic nanoparticle hyperthermia enhances radiation therapy: A study in mouse models of human prostate cancer. Int J Hyperthermia, 2015, 31: 359–374

    CAS  Article  Google Scholar 

  9. 9

    He L, Wang M, Ge J, et al. Magnetic assembly route to colloidal responsive photonic nanostructures. Acc Chem Res, 2012, 45: 1431–1440

    CAS  Article  Google Scholar 

  10. 10

    Olsson RT, Azizi Samir MAS, Salazar-Alvarez G, et al. Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat Nanotech, 2010, 5: 584–588

    CAS  Article  Google Scholar 

  11. 11

    Yun H, Liu X, Paik T, et al. Size- and composition-dependent radio frequency magnetic permeability of iron oxide nanocrystals. ACS Nano, 2014, 8: 12323–12337

    CAS  Article  Google Scholar 

  12. 12

    Schaller V, Wahnström G, Sanz-Velasco A, et al. Monte Carlo simulation of magnetic multi-core nanoparticles. J Magn Magn Mater, 2009, 321: 1400–1403

    CAS  Article  Google Scholar 

  13. 13

    Lartigue L, Hugounenq P, Alloyeau D, et al. Cooperative organization in iron oxide multi-core nanoparticles potentiates their efficiency as heating mediators and MRI contrast agents. ACS Nano, 2012, 6: 10935–10949

    CAS  Article  Google Scholar 

  14. 14

    Bender P, Fock J, Frandsen C, et al. Relating magnetic properties and high hyperthermia performance of iron oxide nanoflowers. J Phys Chem C, 2018, 122: 3068–3077

    CAS  Article  Google Scholar 

  15. 15

    Faure B, Wetterskog E, Gunnarsson K, et al. 2D to 3D crossover of the magnetic properties in ordered arrays of iron oxide nanocrystals. Nanoscale, 2013, 5: 953–960

    CAS  Article  Google Scholar 

  16. 16

    Lisjak D, Mertelj A. Anisotropic magnetic nanoparticles: A review of their properties, syntheses and potential applications. Prog Mater Sci, 2018, 95: 286–328

    CAS  Article  Google Scholar 

  17. 17

    Pileni MP. Nanocrystal self-assemblies: Fabrication and collective properties. J Phys Chem B, 2001, 105: 3358–3371

    CAS  Article  Google Scholar 

  18. 18

    Toulemon D, Rastei MV, Schmool D, et al. Enhanced collective magnetic properties induced by the controlled assembly of iron oxide nanoparticles in chains. Adv Funct Mater, 2016, 26: 2454–2462

    CAS  Article  Google Scholar 

  19. 19

    Wetterskog E, Jonasson C, Smilgies DM, et al. Colossal anisotropy of the dynamic magnetic susceptibility in low-dimensional nanocube assemblies. ACS Nano, 2018, 12: 1403–1412

    CAS  Article  Google Scholar 

  20. 20

    Singh G, Chan H, Baskin A, et al. Self-assembly of magnetite nanocubes into helical superstructures. Science, 2014, 345: 1149–1153

    CAS  Article  Google Scholar 

  21. 21

    Dikansky YI, Zakinyan AR, Mkrtchyan LS. Instability of a thin layer of a magnetic fluid in a perpendicular magnetic field. Tech Phys, 2010, 55: 1270–1274

    CAS  Article  Google Scholar 

  22. 22

    Zhang Q, Janner M, He L, et al. Photonic labyrinths: Two-dimensional dynamic magnetic assembly and in situ solidification. Nano Lett, 2013, 13: 1770–1775

    CAS  Article  Google Scholar 

  23. 23

    Singh G, Chan H, Udayabhaskararao T, et al. Magnetic field-induced self-assembly of iron oxide nanocubes. Faraday Discuss, 2015, 181: 403–421

    CAS  Article  Google Scholar 

  24. 24

    Fang WX, He ZH, Xu XQ, et al. Magnetic-field-induced chain-like assembly structures of Fe3O4 nanoparticles. Europhys Lett, 2007, 77: 68004

    Article  CAS  Google Scholar 

  25. 25

    Jestin J, Cousin F, Dubois I, et al. Anisotropic reinforcement of nanocomposites tuned by magnetic orientation of the filler network. Adv Mater, 2008, 20: 2533–2540

    CAS  Article  Google Scholar 

  26. 26

    Li L, Yang Y, Ding J, et al. Synthesis of magnetite nanooctahedra and their magnetic field-induced two-/three-dimensional superstructure. Chem Mater, 2010, 22: 3183–3191

    CAS  Article  Google Scholar 

  27. 27

    Fragouli D, Buonsanti R, Bertoni G, et al. Dynamical formation of spatially localized arrays of aligned nanowires in plastic films with magnetic anisotropy. ACS Nano, 2010, 4: 1873–1878

    CAS  Article  Google Scholar 

  28. 28

    Yao Y, Metwalli E, Niedermeier MA, et al. Nano- and microstructures of magnetic field-guided maghemite nanoparticles in diblock copolymer films. ACS Appl Mater Interfaces, 2014, 6: 5244–5254

    CAS  Article  Google Scholar 

  29. 29

    Wetterskog E, Klapper A, Disch S, et al. Tuning the structure and habit of iron oxide mesocrystals. Nanoscale, 2016, 8: 15571–15580

    CAS  Article  Google Scholar 

  30. 30

    Park JI, Jun Y, Choi J, et al. Highly crystalline anisotropic superstructures via magnetic field induced nanoparticle assembly. Chem Commun, 2007, 5001

  31. 31

    Ahniyaz A, Sakamoto Y, Bergström L. Magnetic field-induced assembly of oriented superlattices from maghemite nanocubes. Proc Natl Acad Sci USA, 2007, 104: 17570–17574

    CAS  Article  Google Scholar 

  32. 32

    Sahoo Y, Cheon M, Wang S, et al. Field-directed self-assembly of magnetic nanoparticles. J Phys Chem B, 2004, 108: 3380–3383

    CAS  Article  Google Scholar 

  33. 33

    Varón M, Beleggia M, Kasama T, et al. Dipolar magnetism in ordered and disordered low-dimensional nanoparticle assemblies. Sci Rep, 2013, 3: 1234

    Article  CAS  Google Scholar 

  34. 34

    Ngo AT, Pileni MP. Assemblies of ferrite nanocrystals: Partial orientation of the easy magnetic axes. J Phys Chem B, 2001, 105: 53–58

    CAS  Article  Google Scholar 

  35. 35

    Bedanta S, Kleemann W. Supermagnetism. J Phys D-Appl Phys, 2008, 42: 013001

    Article  CAS  Google Scholar 

  36. 36

    Djurberg C, Svedlindh P, Nordblad P, et al. Dynamics of an interacting particle system: Evidence of critical slowing down. Phys Rev Lett, 1997, 79: 5154–5157

    CAS  Article  Google Scholar 

  37. 37

    Andersson JO, Djurberg C, Jonsson T, et al. Monte Carlo studies of the dynamics of an interacting monodispersive magnetic-particle system. Phys Rev B, 1997, 56: 13983–13988

    CAS  Article  Google Scholar 

  38. 38

    Sun Y, Salamon MB, Garnier K, et al. Memory effects in an interacting magnetic nanoparticle system. Phys Rev Lett, 2003, 91: 167206

    Article  CAS  Google Scholar 

  39. 39

    Sasaki M, Jönsson PE, Takayama H, et al. Aging and memory effects in superparamagnets and superspin glasses. Phys Rev B, 2005, 71: 104405

    Article  CAS  Google Scholar 

  40. 40

    Poddar P, Telem-Shafir T, Fried T, et al. Dipolar interactions in two-and three-dimensional magnetic nanoparticle arrays. Phys Rev B, 2002, 66: 060403

    Article  CAS  Google Scholar 

  41. 41

    Farrell D, Cheng Y, McCallum RW, et al. Magnetic interactions of iron nanoparticles in arrays and dilute dispersions. J Phys Chem B, 2005, 109: 13409–13419

    CAS  Article  Google Scholar 

  42. 42

    Majetich SA, Sachan M. Magnetostatic interactions in magnetic nanoparticle assemblies: Energy, time and length scales. J Phys D-Appl Phys, 2006, 39: R407–R422

    CAS  Article  Google Scholar 

  43. 43

    Morup S, Tronc E. Superparamagnetic relaxation of weakly interacting particles. Phys Rev Lett, 1994, 72: 3278–3281

    CAS  Article  Google Scholar 

  44. 44

    Fang Z, Zhen YR, Neumann O, et al. Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle. Nano Lett, 2013, 13: 1736–1742

    CAS  Article  Google Scholar 

  45. 45

    Wang Z, Li Z, Sun Z, et al. Visualization nanozyme based on tumor microenvironment “unlocking” for intensive combination therapy of breast cancer. Sci Adv, 2020, 6: eabc8733

    CAS  Article  Google Scholar 

  46. 46

    Tang H, Wei J, Liu F, et al. Strong metal-support interactions between gold nanoparticles and nonoxides. J Am Chem Soc, 2016, 138: 56–59

    CAS  Article  Google Scholar 

  47. 47

    Wetterskog E, Agthe M, Mayence A, et al. Precise control over shape and size of iron oxide nanocrystals suitable for assembly into ordered particle arrays. Sci Tech Adv Mater, 2014, 15: 055010

    CAS  Article  Google Scholar 

  48. 48

    Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods, 2012, 9: 671–675

    CAS  Article  Google Scholar 

  49. 49

    Faure B, Salazar-Alvarez G, Bergstrom L. Hamaker constants of iron oxide nanoparticles. Langmuir, 2011, 27: 8659–8664

    CAS  Article  Google Scholar 

  50. 50

    Maiorano A, Parisi G. Support for the value 5/2 for the spin glass lower critical dimension at zero magnetic field. Proc Natl Acad Sci USA, 2018, 115: 5129–5134

    CAS  Article  Google Scholar 

Download references


The present work was financially supported by Shenzhen Science and Technology Project (CYJ20180507182246321 and JCYJ20200109105825504) and Swedish Research Council VR (2016-06959). Xiaoqi Liao is grateful for financial support from the Doctoral Joint-Training Program of China Scholarship Council.

Author information



Corresponding authors

Correspondence to Yu-Jia Zeng or German Salazar-Alvarez.

Additional information

Author contributions

Liao X, Wetterskog E and Zeng YJ designed the experiments; Liao X, Gunnarsson K and Svedlindh P performed the experiments; Ulusoy S, Liang H and Huang R performed the data analysis; Liao X, Salazar-Alvarez G, Wang Y, Zeng YJ, and Svedlindh P wrote and revised the manuscript. All authors have discussed and approved the results and conclusions.

Conflict of interest

The authors declare no conflict of interest.

Xiaoqi Liao is a postdoctoral researcher at Shenzhen University. He received his PhD degree in 2019 from Xi’an Jiaotong University. During 2017–2018, he was a joint-training PhD student at Uppsala University. His research interest focuses on magnetic materials and devices, including magnetic shape memory alloys, self-assembly of magnetic nanoparticles, and 2D materials.

Yu-Jia Zeng is a professor at Shenzhen University. He received his bachelor’s degree in materials science and engineering and his PhD degree in materials physics and chemistry from Zhejiang University. After graduation, he worked at the Department of Physics of KU Leuven as a postdoctoral fellow and a research associate. His research interests include low-dimensional materials, in particular semiconductors, for optoelectronics, spintronics, and multiferroics.

Germán Salazar-Alvarez obtained his PhD degree in 2005 from the Royal Institute of Technology and his Docent degree from Stockholm University in 2012, where he was a group leader between 2010–2019. Since 2020 he is a senior lecturer at Uppsala University. His research activities are devoted to the synthesis, self-assembly, and characterization of nanomaterials with magnetic, catalytic, and ion transport functionalities.

Supporting Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liao, X., Ulusoy, S., Huang, R. et al. Low-field-induced spin-glass behavior and controllable anisotropy in nanoparticle assemblies at a liquid-air interface. Sci. China Mater. (2021).

Download citation


  • magnetic nanoparticles
  • assembly
  • anisotropy
  • spin glass