Skip to main content

Suppressing the metal-metal interaction by CoZn0.5V1.5O4 derived from two-dimensional metal-organic frameworks for supercapacitors

用于超级电容器的二维金属有机框架衍生的CoZn0.5V1.5O4抑制金属-金属相互作用研究

Abstract

Co2VO4 with Co tetrahedrons and octahedrons of transition metal oxides has achieved progress in electrocatalysts and batteries. However, high metal-metal interactions make it challenging to maintain high reactivity as well as increase the conductivity and stability of supercapacitors. In this work, spinel-structured CoZn0.5V1.5O4 with a high specific surface area was synthesized through an ion-exchange process from the metal-organic frameworks of zinc-cobalt. Density functional theory calculations indicate that the replacement of transition metal by Zn can decrease the interaction between the transition metals, leading to a downshift in the π*-orbitals (V-O) and half-filled a1g orbitals near the Fermi level, thus increasing the conductivity and stability of CoZn0.5V1.5O4. As a supercapacitor electrode, CoZn0.5V1.5O4 exhibits high cycling durability (99.4% capacitance retention after 18,000 cycles) and specific capacitance (1100 mF cm−2 at 1 mA cm−2). This work provides the possibility of designing octahedral and tetrahedral sites in transition metal oxides to improve their electrochemical performance.

摘要

具有四面体钴和八面体钴的Co2VO4在电催化和电池领域已取得重要进展. 然而, 金属-金属之间强的相互作用会降低活性物质的电导率, 又会影响表面反应活性, 因此同时提升超级电容器活性、 电导率和稳定性具有挑战性. 本工作利用锌-钴金属有机骨架(ZnCo-MOF)的离子交换合成了具有高比表面的尖晶石结构CoZn0.5V1.5O4. 密度泛函理论计算表明, 用锌取代过渡金属可以减少过渡金属之间的相互作用, 使π*轨道(V–O)和半满的a1 g轨道下移至费米能级附近, 从而提高CoZn0.5V1.5O4的电导率和稳定性. 作为超级电容器电极, CoZn0.5V1.5O4 具有较高的循环稳定性(18,000次循环后电容保持率为99.4%)和比容量 (1 mA cm−2时为1100 mF cm−2). 这项工作为设计过渡金属八面体和四面体的位置以提高材料的电化学性能提供了可能性.

References

  1. 1

    Fang G, Zhou J, Pan A, et al. Recent advances in aqueous zinc-ion batteries. ACS Energy Lett, 2018, 3: 2480–2501

    CAS  Article  Google Scholar 

  2. 2

    Yu L, Yu XY, Lou XWD. The design and synthesis of hollow micro-/ nanostructures: Present and future trends. Adv Mater, 2018, 30: 1800939

    Article  CAS  Google Scholar 

  3. 3

    Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future. Nature, 2012, 488: 294–303

    CAS  Article  Google Scholar 

  4. 4

    Mai LQ, Minhas-Khan A, Tian X, et al. Synergistic interaction between redox-active electrolyte and binder-free functionalized carbon for ultrahigh supercapacitor performance. Nat Commun, 2013, 4: 2923

    Article  CAS  Google Scholar 

  5. 5

    Zhu G, Yang L, Wang W, et al. Hierarchical three-dimensional manganese doped cobalt phosphide nanowire decorated nanosheet cluster arrays for high-performance electrochemical pseudocapacitor electrodes. Chem Commun, 2018, 54: 9234–9237

    CAS  Article  Google Scholar 

  6. 6

    Qin T, Liu B, Wen Y, et al. Freestanding flexible graphene foams @polypyrrole@MnO2 electrodes for high-performance supercapacitors. J Mater Chem A, 2016, 4: 9196–9203

    CAS  Article  Google Scholar 

  7. 7

    Yang T, Liang J, Sultana I, et al. Formation of hollow MoS2/carbon microspheres for high capacity and high rate reversible alkali-ion storage. J Mater Chem A, 2018, 6: 8280–8288

    CAS  Article  Google Scholar 

  8. 8

    Liu Q, Shi H, Yang T, et al. Sequential growth of hierarchical N-doped carbon-MoS2 nanocomposites with variable nanostructures. J Mater Chem A, 2019, 7: 6197–6204

    CAS  Article  Google Scholar 

  9. 9

    Wang G, Zhang L, Zhang J. A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev, 2012, 41: 797–828

    CAS  Article  Google Scholar 

  10. 10

    Sahu V, Shekhar S, Sharma RK, et al. Ultrahigh performance supercapacitor from lacey reduced graphene oxide nanoribbons. ACS Appl Mater Interfaces, 2015, 7: 3110–3116

    CAS  Article  Google Scholar 

  11. 11

    Ma Q, Yu Y, Sindoro M, et al. Carbon-based functional materials derived from waste for water remediation and energy storage. Adv Mater, 2017, 29: 1605361

    Article  CAS  Google Scholar 

  12. 12

    Gao M, Wang WK, Rong Q, et al. Porous ZnO-coated Co3O4 nanorod as a high-energy-density supercapacitor material. ACS Appl Mater Interfaces, 2018, 10: 23163–23173

    CAS  Article  Google Scholar 

  13. 13

    Wang F, Wu X, Yuan X, et al. Latest advances in supercapacitors: From new electrode materials to novel device designs. Chem Soc Rev, 2017, 46: 6816–6854

    CAS  Article  Google Scholar 

  14. 14

    Jiang L, Yuan X, Liang J, et al. Nanostructured core-shell electrode materials for electrochemical capacitors. J Power Sources, 2016, 331: 408–425

    CAS  Article  Google Scholar 

  15. 15

    Liu T, Finn L, Yu M, et al. Polyaniline and polypyrrole pseudocapacitor electrodes with excellent cycling stability. Nano Lett, 2014, 14: 2522–2527

    CAS  Article  Google Scholar 

  16. 16

    Kim J, Young C, Lee J, et al. Nanoarchitecture of MOF-derived nanoporous functional composites for hybrid supercapacitors. J Mater Chem A, 2017, 5: 15065–15072

    CAS  Article  Google Scholar 

  17. 17

    Han SA, Lee J, Shim K, et al. Strategically designed zeolitic imidazolate frameworks for controlling the degree of graphitization. Bull Chem Soc Jpn, 2018, 91: 1474–1480

    CAS  Article  Google Scholar 

  18. 18

    Qutaish H, Lee J, Hyeon Y, et al. Design of cobalt catalysed carbon nanotubes in bimetallic zeolitic imidazolate frameworks. Appl Surf Sci, 2021, 547: 149134

    CAS  Article  Google Scholar 

  19. 19

    Lee J, Choi SH, Qutaish H, et al. Structurally stabilized lithium-metal anode via surface chemistry engineering. Energy Storage Mater, 2021, 37: 315–324

    Article  Google Scholar 

  20. 20

    Chandra Sekhar S, Nagaraju G, Narsimulu D, et al. Graphene matrix sheathed metal vanadate porous nanospheres for enhanced longevity and high-rate energy storage devices. ACS Appl Mater Interfaces, 2020, 12: 27074–27086

    CAS  Article  Google Scholar 

  21. 21

    Mu C, Mao J, Guo J, et al. Rational design of spinel cobalt vanadate oxide Co2VO4 for superior electrocatalysis. Adv Mater, 2020, 32: 1907168

    CAS  Article  Google Scholar 

  22. 22

    Abe H, Liu J, Ariga K. Catalytic nanoarchitectonics for environmentally compatible energy generation. Mater Today, 2016, 19: 12–18

    CAS  Article  Google Scholar 

  23. 23

    Chen C, Kang Y, Huo Z, et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science, 2014, 343: 1339–1343

    CAS  Article  Google Scholar 

  24. 24

    Liu H, Zhu Z, Yan Q, et al. A disordered rock salt anode for fast-charging lithium-ion batteries. Nature, 2020, 585: 63–67

    CAS  Article  Google Scholar 

  25. 25

    Ling T, Da P, Zheng X, et al. Atomic-level structure engineering of metal oxides for high-rate oxygen intercalation pseudocapacitance. Sci Adv, 2018, 4: eaau6261

    CAS  Article  Google Scholar 

  26. 26

    Yang J, Zheng C, Xiong P, et al. Zn-doped Ni-MOF material with a high supercapacitive performance. J Mater Chem A, 2014, 2: 19005–19010

    CAS  Article  Google Scholar 

  27. 27

    Niu J, Shao R, Liang J, et al. Biomass-derived mesopore-dominant porous carbons with large specific surface area and high defect density as high performance electrode materials for Li-ion batteries and supercapacitors. Nano Energy, 2017, 36: 322–330

    CAS  Article  Google Scholar 

  28. 28

    Sheberla D, Bachman JC, Elias JS, et al. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat Mater, 2017, 16: 220–224

    CAS  Article  Google Scholar 

  29. 29

    Xiao Z, Mei Y, Yuan S, et al. Controlled hydrolysis of metal-organic frameworks: Hierarchical Ni/Co-layered double hydroxide microspheres for high-performance supercapacitors. ACS Nano, 2019, 13: 7024–7030

    CAS  Article  Google Scholar 

  30. 30

    Salunkhe RR, Kaneti YV, Yamauchi Y. Metal-organic framework-derived nanoporous metal oxides toward supercapacitor applications: Progress and prospects. ACS Nano, 2017, 11: 5293–5308

    CAS  Article  Google Scholar 

  31. 31

    Guan BY, Yu XY, Wu HB, et al. Complex nanostructures from materials based on metal-organic frameworks for electrochemical energy storage and conversion. Adv Mater, 2017, 29: 1703614

    Article  CAS  Google Scholar 

  32. 32

    Wang C, Kaneti YV, Bando Y, et al. Metal-organic framework-derived one-dimensional porous or hollow carbon-based nanofibers for energy storage and conversion. Mater Horiz, 2018, 5: 394–407

    CAS  Article  Google Scholar 

  33. 33

    Zhang H, Liu X, Wu Y, et al. MOF-derived nanohybrids for electrocatalysis and energy storage: Current status and perspectives. Chem Commun, 2018, 54: 5268–5288

    CAS  Article  Google Scholar 

  34. 34

    Indra A, Song T, Paik U. Metal organic framework derived materials: Progress and prospects for the energy conversion and storage. Adv Mater, 2018, 30: 1705146

    Article  CAS  Google Scholar 

  35. 35

    Gumilar G, Kaneti YV, Henzie J, et al. General synthesis of hierarchical sheet/plate-like M-BDC (M = Cu, Mn, Ni, and Zr) metal-organic frameworks for electrochemical non-enzymatic glucose sensing. Chem Sci, 2020, 11: 3644–3655

    CAS  Article  Google Scholar 

  36. 36

    Bai Y, Zhang G, Zheng S, et al. Pyridine-modulated Ni/Co bimetallic metal-organic framework nanoplates for electrocatalytic oxygen evolution. Sci China Mater, 2021, 64: 137–148

    CAS  Article  Google Scholar 

  37. 37

    Li D, Xu HQ, Jiao L, et al. Metal-organic frameworks for catalysis: State of the art, challenges, and opportunities. EnergyChem, 2019, 1: 100005

    Article  Google Scholar 

  38. 38

    Li Q, Li X, Gu J, et al. Porous rod-like Ni2P/Ni assemblies for enhanced urea electrooxidation. Nano Res, 2021, 14: 1405–1412

    CAS  Article  Google Scholar 

  39. 39

    Salunkhe RR, Tang J, Kobayashi N, et al. Ultrahigh performance supercapacitors utilizing core-shell nanoarchitectures from a metal-organic framework-derived nanoporous carbon and a conducting polymer. Chem Sci, 2016, 7: 5704–5713

    CAS  Article  Google Scholar 

  40. 40

    Zhang S, Xia W, Yang Q, et al. Core-shell motif construction: Highly graphitic nitrogen-doped porous carbon electrocatalysts using MOF-derived carbon@COF heterostructures as sacrificial templates. Chem Eng J, 2020, 396: 125154

    CAS  Article  Google Scholar 

  41. 41

    Guan C, Liu X, Ren W, et al. Rational design of metal-organic framework derived hollow NiCo2O4 arrays for flexible supercapacitor and electrocatalysis. Adv Energy Mater, 2017, 7: 1602391

    Article  CAS  Google Scholar 

  42. 42

    Young C, Kim J, Kaneti YV, et al. One-step synthetic strategy of hybrid materials from bimetallic metal-organic frameworks for supercapacitor applications. ACS Appl Energy Mater, 2018, 1: 2007–2015

    CAS  Article  Google Scholar 

  43. 43

    Guan BY, Yu L, Wang X, et al. Formation of onion-like NiCo2S4 particles via sequential ion-exchange for hybrid supercapacitors. Adv Mater, 2017, 29: 1605051

    Article  CAS  Google Scholar 

  44. 44

    Yang Y, Li ML, Lin JN, et al. MOF-derived Ni3S4 encapsulated in 3D conductive network for high-performance supercapacitor. Inorg Chem, 2020, 59: 2406–2412

    CAS  Article  Google Scholar 

  45. 45

    Zhang S, Li D, Chen S, et al. Highly stable supercapacitors with MOF-derived Co9S8/carbon electrodes for high rate electrochemical energy storage. J Mater Chem A, 2017, 5: 12453–12461

    CAS  Article  Google Scholar 

  46. 46

    Bi W, Jahrman E, Seidler G, et al. Tailoring energy and power density through controlling the concentration of oxygen vacancies in V2O5/PEDOT nanocable-based supercapacitors. ACS Appl Mater Interfaces, 2019, 11: 16647–16655

    CAS  Article  Google Scholar 

  47. 47

    Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci, 1996, 6: 15–50

    CAS  Article  Google Scholar 

  48. 48

    Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865–3868

    CAS  Article  Google Scholar 

  49. 49

    Blöchl PE. Projector augmented-wave method. Phys Rev B, 1994, 50: 17953–17979

    Article  Google Scholar 

  50. 50

    Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B, 1999, 59: 1758–1775

    CAS  Article  Google Scholar 

  51. 51

    Mueller T, Hautier G, Jain A, et al. Evaluation of tavorite-structured cathode materials for lithium-ion batteries using high-throughput computing. Chem Mater, 2011, 23: 3854–3862

    CAS  Article  Google Scholar 

  52. 52

    Zhang Y, Chen H, Guan C, et al. Energy-saving synthesis of MOF-derived hierarchical and hollow Co(VO3)2-Co(OH)2 composite leaf arrays for supercapacitor electrode materials. ACS Appl Mater Interfaces, 2018, 10: 18440–18444

    CAS  Article  Google Scholar 

  53. 53

    Kong D, Wang Y, Huang S, et al. 3D self-branched zinc-cobalt oxide@N-doped carbon hollow nanowall arrays for high-performance asymmetric supercapacitors and oxygen electrocatalysis. Energy Storage Mater, 2019, 23: 653–663

    Article  Google Scholar 

  54. 54

    Wang Y, Chai H, Dong H, et al. Superior cycle stability performance of quasi-cuboidal CoV2O6 microstructures as electrode material for supercapacitors. ACS Appl Mater Interfaces, 2016, 8: 27291–27297

    CAS  Article  Google Scholar 

  55. 55

    Fan X, Guan J, Cao X, et al. Low-temperature synthesis, magnetic and microwave electromagnetic properties of substoichiometric spinel cobalt ferrite octahedra. Eur J Inorg Chem, 2010, 2010(3): 419–426

    Article  CAS  Google Scholar 

  56. 56

    Wang X, Liu Y, Zhang T, et al. Geometrical-site-dependent catalytic activity of ordered mesoporous Co-based spinel for benzene oxidation: In situ DRIFTS study coupled with Raman and XAFS spectroscopy. ACS Catal, 2017, 7: 1626–1636

    CAS  Article  Google Scholar 

  57. 57

    Guan C, Wang Y, Hu Y, et al. Conformally deposited NiO on a hierarchical carbon support for high-power and durable asymmetric supercapacitors. J Mater Chem A, 2015, 3: 23283–23288

    CAS  Article  Google Scholar 

  58. 58

    Goodenough JB. The two components of the crystallographic transition in VO2. J Solid State Chem, 1971, 3: 490–500

    CAS  Article  Google Scholar 

  59. 59

    Landron S, Lepetit MB. Importance of t2g-eg hybridization in transition metal oxides. Phys Rev B, 2008, 77: 125106

    Article  CAS  Google Scholar 

  60. 60

    Aetukuri NB, Gray AX, Drouard M, et al. Control of the metal-insulator transition in vanadium dioxide by modifying orbital occupancy. Nat Phys, 2013, 9: 661–666

    CAS  Article  Google Scholar 

  61. 61

    Liu S, Sarwar S, Zhang H, et al. One-step microwave-controlled synthesis of CoV2O6·2H2O nanosheet for super long cycle-life battery-type supercapacitor. Electrochim Acta, 2020, 364: 137320

    CAS  Article  Google Scholar 

  62. 62

    Sun W, Du Y, Wu G, et al. Constructing metallic zinc-cobalt sulfide hierarchical core-shell nanosheet arrays derived from 2D metal-organic-frameworks for flexible asymmetric supercapacitors with ultrahigh specific capacitance and performance. J Mater Chem A, 2019, 7: 7138–7150

    CAS  Article  Google Scholar 

  63. 63

    Shanmugavani A, Selvan RK. Improved electrochemical performances of CuCo2O4/CuO nanocomposites for asymmetric supercapacitors. Electrochim Acta, 2016, 188: 852–862

    CAS  Article  Google Scholar 

  64. 64

    Li H, Lang J, Lei S, et al. A high-performance sodium-ion hybrid capacitor constructed by metal-organic framework-derived anode and cathode materials. Adv Funct Mater, 2018, 28: 1800757

    Article  CAS  Google Scholar 

  65. 65

    Augustyn V, Come J, Lowe MA, et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat Mater, 2013, 12: 518–522

    CAS  Article  Google Scholar 

  66. 66

    Bi W, Wang J, Jahrman EP, et al. Interface engineering V2O5 nanofibers for high-energy and durable supercapacitors. Small, 2019, 15: 1901747

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51872204, 52072261 and 22011540379), the National Key Research and Development Program of China (2017YFA0204600), Shanghai Social Development Science and Technology Project (20dz1201800), and Shanghai Sailing Program (21YF1430900).

Author information

Affiliations

Authors

Contributions

Author contributions Yuan F and Gao G designed the experiments; Yuan F performed the experiments and wrote the original draft; Gao G contributed to the theoretical analysis; Yuan F, Jiang X, Su Y, Guo J and Bao Z performed the data analysis; Gao G, Bi W, Shen J, Bao Z and Wu G supervised the study; Gao G, Bi W and Wu G developed the concept and revised the manuscript. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Guohua Gao or Wenchao Bi or Guangming Wu.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Fang Yuan is now a master’s degree candidate at the School of Physical Science and Engineering, Tongji University. Her research interest focuses on metal-organic frameworks, energy storage and supercapacitors.

Guohua Gao is an associate professor at the School of Physical Science and Engineering, Tongji University. He obtained his PhD degree in materials physics and chemistry from Tongji University in 2010. His main research interests focus on energy storage and conversion, first principles, and vanadium-based nanohybrids.

Wenchao Bi received her PhD degree in physics from Tongji University in 2020. She was a joint PhD candidate of the University of Washington (Seattle) in 2017–2019. She joined the Departments of Physics, College of Science, University of Shanghai for Science and Technology in 2020. Her research focuses on electrode material design and energy storage mechanism exploration of batteries and supercapacitors.

Guangming Wu is a professor at the School of Physical Science and Engineering, Tongji University. He obtained his PhD degree in condensed matter physics from Tongji University in 1998. His main research interests focus on functional nanomaterials, artificial regulation of micronano structure, energy storage and energy saving.

Surpporting Information

40843_2021_1717_MOESM1_ESM.pdf

Suppressing the Metal-Metal Interaction by CoZn0.5V1.5O4 Derived from Two-Dimensional Metal-Organic Frameworks for Supercapacitors

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yuan, F., Gao, G., Jiang, X. et al. Suppressing the metal-metal interaction by CoZn0.5V1.5O4 derived from two-dimensional metal-organic frameworks for supercapacitors. Sci. China Mater. (2021). https://doi.org/10.1007/s40843-021-1717-3

Download citation

Keywords

  • supercapacitors
  • metal-metal interaction
  • octahedral
  • tetrahedral
  • metal-organic frameworks