Skip to main content
Log in

Defect tolerance in chalcogenide perovskite photovoltaic material BaZrS3

硫族钙钛矿光伏材料BaZrS3的缺陷容忍性

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Chalcogenide perovskites (CPs) exhibiting lower band gaps than oxide perovskites and higher stability than halide perovskites are promising materials for photovoltaic and optoelectronic applications. For such applications, the absence of deep defect levels serving as recombination centers (dubbed defect tolerance) is a highly desirable property. Here, using density functional theory (DFT) calculations, we study the intrinsic defects in BaZrS3, a representative CP material. We compare Hubbard-U and hybrid functional methods, both of which have been widely used in addressing the band gap problem of semi-local functionals in DFT. We find that tuning the U value to obtain experimental bulk band gap and then using the obtained U value for defect calculations may result in over-localization of defect states. In the hybrid functional calculation, the band gap of BaZrS3 can be accurately obtained. We observe the formation of small S-atom clusters in both methods, which tend to self-passivate the defects from forming mid-gap levels. Even though in the hybrid functional calculations several relatively deep defects are observed, all of them exhibit too high formation energy to play a significant role if the materials are prepared under thermal equilibrium. BaZrS3 is thus expected to exhibit sufficient defect tolerance promising for photovoltaic and optoelectronic applications.

摘要

硫族钙钛矿具有比氧化物钙钛矿更低的带隙以及比卤化物 钙钛矿更高的稳定性, 有望应用于光伏和光电领域. 在这类应用中, 理想的材料往往需要避免存在复合中心的深能级缺陷, 即缺陷容 忍性. 本文采用密度泛函理论(DFT)研究了一种典型硫族钙钛矿材 料BaZrS3的本征缺陷. 我们比较了Hubbard-U和杂化泛函这两种广 泛用于解决DFT中半局域泛函带隙问题的方法. 研究发现, 通过调 整U值获得与实验一致的带隙, 并将该U值用于缺陷计算, 可能会导 致缺陷态过度局域化. 而杂化泛函计算则可以准确得到BaZrS3的带 隙. 采用这两种计算方法均会形成小的S原子团簇, 这些团簇倾向于 通过自钝化来避免产生带隙中的深能级. 尽管在杂化泛函计算中 观察到一些能级相对较深的缺陷, 但是在热平衡条件下制备的材 料中, 由于过高的形成能, 这些缺陷的作用可以被忽略. 因此, BaZrS3具有足够的缺陷容忍性, 有望应用于光伏和光电领域.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 2009, 131: 6050–6051

    Article  CAS  Google Scholar 

  2. Lee MM, Teuscher J, Miyasaka T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012, 338: 643–647

    Article  CAS  Google Scholar 

  3. Burschka J, Pellet N, Moon SJ, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013, 499: 316–319

    Article  CAS  Google Scholar 

  4. Liu M, Johnston MB, Snaith HJ. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013, 501: 395–398

    Article  CAS  Google Scholar 

  5. Green MA, Ho-Baillie A, Snaith HJ. The emergence of perovskite solar cells. Nat Photon, 2014, 8: 506–514

    Article  CAS  Google Scholar 

  6. Jeon NJ, Noh JH, Yang WS, et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature, 2015, 517: 476–480

    Article  CAS  Google Scholar 

  7. Saliba M, Matsui T, Domanski K, et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science, 2016, 354: 206–209

    Article  CAS  Google Scholar 

  8. McMeekin DP, Sadoughi G, Rehman W, et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science, 2016, 351: 151–155

    Article  CAS  Google Scholar 

  9. Fang Y, Dong Q, Shao Y, et al. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat Photon, 2015, 9: 679–686

    Article  CAS  Google Scholar 

  10. Büchele P, Richter M, Tedde SF, et al. X-ray imaging with scintillator-sensitized hybrid organic photodetectors. Nat Photon, 2015, 9: 843–848

    Article  Google Scholar 

  11. Tan Z, Wu Y, Hong H, et al. Two-dimensional (C4H9NH3)2PbBr4 perovskite crystals for high-performance photodetector. J Am Chem Soc, 2016, 138: 16612–16615

    Article  CAS  Google Scholar 

  12. Kim YC, Kim KH, Son DY, et al. Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature, 2017, 550: 87–91

    Article  CAS  Google Scholar 

  13. Chen Q, Wu J, Ou X, et al. All-inorganic perovskite nanocrystal scintillators. Nature, 2018, 561: 88–93

    Article  CAS  Google Scholar 

  14. Tan ZK, Moghaddam RS, Lai ML, et al. Bright light-emitting diodes based on organometal halide perovskite. Nat Nanotech, 2014, 9: 687–692

    Article  CAS  Google Scholar 

  15. Stranks SD, Snaith HJ. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat Nanotech, 2015, 10: 391–402

    Article  CAS  Google Scholar 

  16. Cho H, Jeong SH, Park MH, et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science, 2015, 350: 1222–1225

    Article  CAS  Google Scholar 

  17. Swarnkar A, Marshall AR, Sanehira EM, et al. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science, 2016, 354: 92–95

    Article  CAS  Google Scholar 

  18. Zhang L, Yang X, Jiang Q, et al. Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes. Nat Commun, 2017, 8: 15640

    Article  CAS  Google Scholar 

  19. Xiao Z, Kerner RA, Zhao L, et al. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat Photon, 2017, 11: 108–115

    Article  CAS  Google Scholar 

  20. Lin K, Xing J, Quan LN, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent. Nature, 2018, 562: 245–248

    Article  CAS  Google Scholar 

  21. Jaffe W, Cook WR, Jaffe H. Piezoelectric Ceramics. London: Academic Press, 1971

  22. Zhang S, Li F, Jiang X, et al. Advantages and challenges of relaxor-PbTiO3 ferroelectric crystals for electroacoustic transducers—A review. Prog Mater Sci, 2015, 68: 1–66

    Article  CAS  Google Scholar 

  23. Amat A, Mosconi E, Ronca E, et al. Cation-induced band-gap tuning in organohalide perovskites: Interplay of spin-orbit coupling and octahedra tilting. Nano Lett, 2014, 14: 3608–3616

    Article  CAS  Google Scholar 

  24. McGehee MD. Fast-track solar cells. Nature, 2013, 501: 323–325

    Article  CAS  Google Scholar 

  25. Grätzel M. The light and shade of perovskite solar cells. Nat Mater, 2014, 13: 838–842

    Article  Google Scholar 

  26. Hahn H, Mutschke U. Untersuchungen über ternäre chalkogenide. XI. Versuche zur darstellung von thioperowskiten. Z Anorg Allg Chem, 1957, 288: 269–278

    Article  Google Scholar 

  27. Ishii M, Saeki M, Sekita M. Vibrational spectra of barium-zirconium sulfides. Mater Res Bull, 1993, 28: 493–500

    Article  CAS  Google Scholar 

  28. Bennett JW, Grinberg I, Rappe AM. Effect of substituting of S for O: The sulfide perovskite BaZrS3 investigated with density functional theory. Phys Rev B, 2009, 79: 235115

    Article  Google Scholar 

  29. Brehm JA, Bennett JW, Schoenberg MR, et al. The structural diversity of ABS3 compounds with d0 electronic configuration for the B-cation. J Chem Phys, 2014, 140: 224703

    Article  Google Scholar 

  30. Sun YY, Agiorgousis ML, Zhang P, et al. Chalcogenide perovskites for photovoltaics. Nano Lett, 2015, 15: 581–585

    Article  CAS  Google Scholar 

  31. Meng W, Saparov B, Hong F, et al. Alloying and defect control within chalcogenide perovskites for optimized photovoltaic application. Chem Mater, 2016, 28: 821–829

    Article  CAS  Google Scholar 

  32. Ju MG, Dai J, Ma L, et al. Perovskite chalcogenides with optimal bandgap and desired optical absorption for photovoltaic devices. Adv Energy Mater, 2017, 7: 1700216

    Article  Google Scholar 

  33. Perera S, Hui H, Zhao C, et al. Chalcogenide perovskites—An emerging class of ionic semiconductors. Nano Energy, 2016, 22: 129–135

    Article  CAS  Google Scholar 

  34. Niu S, Huyan H, Liu Y, et al. Bandgap control via structural and chemical tuning of transition metal perovskite chalcogenides. Adv Mater, 2017, 29: 1604733

    Article  Google Scholar 

  35. Gross N, Sun YY, Perera S, et al. Stability and band-gap tuning of the chalcogenide perovskite BaZrS3 in Raman and optical investigations at high pressures. Phys Rev Appl, 2017, 8: 044014

    Article  Google Scholar 

  36. Wei X, Hui H, Perera S, et al. Ti-alloying of BaZrS3 chalcogenide perovskite for photovoltaics. ACS Omega, 2020, 5: 18579–18583

    Article  CAS  Google Scholar 

  37. Wei X, Hui H, Zhao C, et al. Realization of BaZrS3 chalcogenide perovskite thin films for optoelectronics. Nano Energy, 2020, 68: 104317

    Article  CAS  Google Scholar 

  38. Comparotto C, Davydova A, Ericson T, et al. Chalcogenide perovskite BaZrS3: Thin film growth by sputtering and rapid thermal processing. ACS Appl Energy Mater, 2020, 3: 2762–2770

    Article  CAS  Google Scholar 

  39. Gupta T, Ghoshal D, Yoshimura A, et al. An environmentally stable and lead-free chalcogenide perovskite. Adv Funct Mater, 2020, 30: 2001387

    Article  CAS  Google Scholar 

  40. Yu Z, Wei X, Zheng Y, et al. Chalcogenide perovskite BaZrS3 thin-film electronic and optoelectronic devices by low temperature processing. Nano Energy, 2021, 85: 105959

    Article  CAS  Google Scholar 

  41. Hanzawa K, Iimura S, Hiramatsu H, et al. Material design of green-light-emitting semiconductors: Perovskite-type sulfide SrHfS3. J Am Chem Soc, 2019, 141: 5343–5349

    Article  CAS  Google Scholar 

  42. Zhang H, Ming C, Yang K, et al. Chalcogenide perovskite YScS3 as a potential p-type transparent conducting material. Chin Phys Lett, 2020, 37: 097201

    Article  CAS  Google Scholar 

  43. Yin WJ, Shi T, Yan Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl Phys Lett, 2014, 104: 063903

    Article  Google Scholar 

  44. Yin WJ, Shi T, Yan Y. Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv Mater, 2014, 26: 4653–4658

    Article  CAS  Google Scholar 

  45. Agiorgousis ML, Sun YY, Zeng H, et al. Strong covalency-induced recombination centers in perovskite solar cell material CH3NH3-PbI3. J Am Chem Soc, 2014, 136: 14570–14575

    Article  CAS  Google Scholar 

  46. Brandt RE, Stevanović V, Ginley DS, et al. Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: Beyond hybrid lead halide perovskites. MRS Commun, 2015, 5: 265–275

    Article  CAS  Google Scholar 

  47. Meggiolaro D, Motti SG, Mosconi E, et al. Iodine chemistry determines the defect tolerance of lead-halide perovskites. Energy Environ Sci, 2018, 11: 702–713

    Article  CAS  Google Scholar 

  48. Kurchin RC, Gorai P, Buonassisi T, et al. Structural and chemical features giving rise to defect tolerance of binary semiconductors. Chem Mater, 2018, 30: 5583–5592

    Article  CAS  Google Scholar 

  49. Park JS, Kim S, Xie Z, et al. Point defect engineering in thin-film solar cells. Nat Rev Mater, 2018, 3: 194–210

    Article  CAS  Google Scholar 

  50. Kang J, Wang LW. High defect tolerance in lead halide perovskite CsPbBr3. J Phys Chem Lett, 2017, 8: 489–493

    Article  CAS  Google Scholar 

  51. Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci, 1996, 6: 15–50

    Article  CAS  Google Scholar 

  52. Blöchl PE. Projector augmented-wave method. Phys Rev B, 1994, 50: 17953–17979

    Article  Google Scholar 

  53. Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B, 1999, 59: 1758–1775

    Article  CAS  Google Scholar 

  54. Perdew JP, Ruzsinszky A, Csonka GI, et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys Rev Lett, 2008, 100: 136406

    Article  Google Scholar 

  55. Dudarev SL, Botton GA, Savrasov SY, et al. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA + U study. Phys Rev B, 1998, 57: 1505–1509

    Article  CAS  Google Scholar 

  56. Heyd J, Scuseria GE, Ernzerhof M. Hybrid functionals based on a screened Coulomb potential. J Chem Phys, 2003, 118: 8207–8215

    Article  CAS  Google Scholar 

  57. Lelieveld R, IJdo DJW. Sulphides with the GdFeO3 structure. Acta Crystlogr B Struct Sci, 1980, 36: 2223–2226

    Article  Google Scholar 

  58. Zhang SB, Northrup JE. Chemical potential dependence of defect formation energies in GaAs: Application to Ga self-diffusion. Phys Rev Lett, 1991, 67: 2339–2342

    Article  CAS  Google Scholar 

  59. Freysoldt C, Grabowski B, Hickel T, et al. First-principles calculations for point defects in solids. Rev Mod Phys, 2014, 86: 253–305

    Article  Google Scholar 

  60. Miyake T, Aryasetiawan F, Imada M. Ab initio procedure for constructing effective models of correlated materials with entangled band structure. Phys Rev B, 2009, 80: 155134

    Article  Google Scholar 

  61. Shih BC, Abtew TA, Yuan X, et al. Screened Coulomb interactions of localized electrons in transition metals and transition-metal oxides. Phys Rev B, 2012, 86: 165124

    Article  Google Scholar 

  62. Shih BC, Zhang Y, Zhang W, et al. Screened Coulomb interaction of localized electrons in solids from first principles. Phys Rev B, 2012, 85: 045132

    Article  Google Scholar 

  63. Liu C, Yang Y, Xia X, et al. Soft template-controlled growth of high-quality CsPbI3 films for efficient and stable solar cells. Adv Energy Mater, 2020, 10: 1903751

    Article  CAS  Google Scholar 

  64. Mostofi AA, Yates JR, Lee YS, et al. Wannier90: A tool for obtaining maximally-localised Wannier functions. Comput Phys Commun, 2008, 178: 685–699

    Article  CAS  Google Scholar 

  65. Deslippe J, Samsonidze G, Strubbe DA, et al. BerkeleyGW: A massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures. Comput Phys Commun, 2012, 183: 1269–1289

    Article  CAS  Google Scholar 

  66. Leslie M, Gillan NJ. The energy and elastic dipole tensor of defects in ionic crystals calculated by the supercell method. J Phys C-Solid State Phys, 1985, 18: 973–982

    Article  CAS  Google Scholar 

  67. Heyd J, Peralta JE, Scuseria GE, et al. Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. J Chem Phys, 2005, 123: 174101

    Article  Google Scholar 

  68. Bang J, Sun YY, Abtew TA, et al. Difficulty in predicting shallow defects with hybrid functionals: Implication of the long-range exchange interaction. Phys Rev B, 2013, 88: 035134

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (11774365), the Natural Science Foundation of Shanghai (19ZR1421800), Shanghai International Cooperation Project (20520760900), the Opening Project and Science Foundation for Youth Scholar of State Key Laboratory of High Performance Ceramics and Superfine Microstructures (SKL201804 and SKL201803SIC). Zeng H thanks the support by US National Science Foundation (NSF) (CBET-1510121) and US Department of Energy (DOE) (DEEE0007364). Zhang S thanks the support by US NSF (CBET-1510948). Zhang P thanks the support by US NSF (DMR-1506669). Gao W thanks the support by the Fundamental Research Funds for the Central Universities (DUT21RC(3) 033) and the computational resources provided by NERSC of the US DOE (DEAC02-05CH11231), the Texas Advanced Computing Center (TACC) and Shanghai Supercomputer Center.

Author information

Authors and Affiliations

Authors

Contributions

Sun YY initiated and coordinated the research. Wu X, Chai J and Ming C conducted the defect calculations. Gao W and Zhang P conducted the RPA calculations. Chen M, Zeng H and Zhang S participated in the analysis of the results. Sun YY, Wu X, Gao W, Ming C, Zeng H, Zhang P and Zhang S wrote the paper.

Corresponding authors

Correspondence to Chen Ming  (明辰) or Yi-Yang Sun  (孙宜阳).

Additional information

Xiaowei Wu received her BSc degree from the School of Physics and Electronic Information Engineering, Neijiang Normal University in 2016, and her Master degree from the School of Resources, Environment and Materials, Guangxi University in 2020. She joined the State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences in 2020 as a research assistant. Her current research focuses on the defect properties in energy materials using first-principles calculations.

Weiwei Gao is currently an associate professor at the School of Physics, Dalian University of Technology. He received his PhD degree from the Department of Physics, The State University of New York at Buffalo and did postdoctoral research at Oden Institute for Computational Engineering and Sciences, University of Texas at Austin. His research interests focus on developing new methods for efficient excited-states calculations and applying computational approach on studying novel materials.

Chen Ming received his PhD degree from Fudan University in 2012. He joined the State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences in 2014 as a postdoc and then as a research associate. His research interests are theoretical explorations of novel materials for optoelectronics and energy applications.

Yi-Yang Sun received his PhD degree from the National University of Singapore (NUS) in 2004. He worked as postdoc at the NUS, National Renewable Energy Laboratory, and Rensselaer Polytechnic Institute (RPI). In 2010, he was appointed research assistant professor and later research scientist at the RPI. In 2017, he assumed a professor position at Shanghai Institute of Ceramics, Chinese Academy of Sciences. His research focuses on the study of energy-related materials using the first-principles computations.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Gao, W., Chai, J. et al. Defect tolerance in chalcogenide perovskite photovoltaic material BaZrS3. Sci. China Mater. 64, 2976–2986 (2021). https://doi.org/10.1007/s40843-021-1683-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-021-1683-0

Keywords

Navigation