Skip to main content
Log in

RuO2 nanoparticles supported on Ni and N co-doped carbon nanotubes as an efficient bifunctional electrocatalyst of lithium-oxygen battery

镍和氮共掺杂碳纳米管负载RuO2纳米颗粒作为锂氧电池的高效双功能电催化剂

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Li2O2, as the discharge product of Li-O2 batteries on cathode, is difficult to be electrochemically decomposed, which will lead to short cycling lifespan of the batteries. In this study, the cycling lifespan of Li-O2 battery was prolonged significantly by an efficient bifunctional catalyst. The Ni and N co-doped carbon nanotubes (NiNCs) were synthesized firstly, and then RuO2 nanoparticles were deposited on NiNCs by a hydrothermal route to synthesize RuO2/NiNC catalysts. Transmission electron microscopy and X-ray diffraction characterizations demonstrated that part of metallic Ni was converted into NiO and Ni(OH)2 after loading RuO2, and the existence of NiO layer can prevent further oxidation of metallic Ni. The Li-O2 battery with RuO2/NiNC as the cathode catalyst exhibits an overpotential of 0.43 V, which is much lower than the value of 1.03 V measured with the Li-O2 battery using NiNC as the cathode catalyst. At a rate of 200 mA g−1, the Li-O2 battery with the RuO2/NiNC cathode can maintain a reversible capacity of 500 mA h g−1 for 260 cycles, and 117 cycles with a higher reversible capacity of 1000 mA h g−1. The superior property of the RuO2/NiNC bifunctional catalyst could be ascribed to the high activity of RuO2 and the rich carbon nanotube structure of NiNC for deposition and decomposition of Li2O2.

摘要

氧化锂是锂-氧电池的主要放电产物, 其很难电化学分解, 因而导致电池的循环寿命过短. 本文通过有效的双功能催化剂显著提升了锂-氧电池的循环寿命. 首先, 我们合成了镍和氮掺杂的碳纳米管(NiNC), 然后通过水热法在NiNC上负载二氧化钌(RuO2)纳米粒子合成RuO2/NiNC催化剂. 透射电子显微镜和X-射线粉末衍射证明在水热负载RuO2之后部分金属镍被转变成氧化镍和氢氧化镍, 且氧化镍的存在缓解了金属镍的进一步氧化. 以RuO2/NiNC为正极催化剂的锂氧电池的过电压仅为0.43 V, 远低于使用NiNC作为正极催化剂的1.03 V. 当限定充放电条件为200 mA g−1, 500 mA h g−1 时循环寿命可达260次, 在1000 mA h g−1高比容量下的循环寿命也达到117次. RuO2/NiNC催化剂优异的性能归因于RuO2的高活性和NiNC材料丰富的碳纳米管结构促进了放电产物 (Li2O2)的生成和分解.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moriarty P, Honnery D. Hydrogen’s role in an uncertain energy future. Int J Hydrogen Energy, 2009, 34: 31–39

    Article  CAS  Google Scholar 

  2. Omer AM. Evaluation of sustainable development and environmentally friendly energy systems: case of Sudan. J Environ Res Manag, 2015, 3: 237–261

    Google Scholar 

  3. Omer AM. Energy, environment and sustainable development. Renew Sustain Energy Rev, 2008, 12: 2265–2300

    Article  CAS  Google Scholar 

  4. Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414: 359–367

    Article  CAS  Google Scholar 

  5. Armand M, Tarascon JM. Building better batteries. Nature, 2008, 451: 652–657

    Article  CAS  Google Scholar 

  6. Goodenough JB, Park KS. The Li-ion rechargeable battery: a perspective. J Am Chem Soc, 2013, 135: 1167–1176

    Article  CAS  Google Scholar 

  7. Goodenough JB, Kim Y. Challenges for rechargeable Li batteries. Chem Mater, 2010, 22: 587–603

    Article  CAS  Google Scholar 

  8. Arbabzadeh M, Johnson JX, Keoleian GA, et al. Twelve principles for green energy storage in grid applications. Environ Sci Technol, 2016, 50: 1046–1055

    Article  CAS  Google Scholar 

  9. Bilich A, Langham K, Geyer R, et al. Life cycle assessment of solar photovoltaic microgrid systems in off-grid communities. Environ Sci Technol, 2017, 51: 1043–1052

    Article  CAS  Google Scholar 

  10. Larcher D, Tarascon JM. Towards greener and more sustainable batteries for electrical energy storage. Nat Chem, 2015, 7: 19–29

    Article  CAS  Google Scholar 

  11. Ogasawara T, Débart A, Holzapfel M, et al. Rechargeable Li2O2 electrode for lithium batteries. J Am Chem Soc, 2006, 128: 1390–1393

    Article  CAS  Google Scholar 

  12. Bruce PG, Freunberger SA, Hardwick LJ, et al. Li-O2 and Li-S batteries with high energy storage. Nat Mater, 2012, 11: 19–29

    Article  CAS  Google Scholar 

  13. Kraytsberg A, Ein-Eli Y. The impact of nano-scaled materials on advanced metal-air battery systems. Nano Energy, 2013, 2: 468–480

    Article  CAS  Google Scholar 

  14. Shu C, Wang J, Long J, et al. Understanding the reaction chemistry during charging in aprotic lithium-oxygen batteries: Existing problems and solutions. Adv Mater, 2019, 31: 1804587

    Article  CAS  Google Scholar 

  15. Li F, Zhang T, Zhou H. Challenges of non-aqueous Li-O2 batteries: electrolytes, catalysts, and anodes. Energy Environ Sci, 2013, 6: 1125

    Article  CAS  Google Scholar 

  16. Girishkumar G, McCloskey B, Luntz AC, et al. Lithium-air battery: Promise and challenges. J Phys Chem Lett, 2010, 1: 2193–2203

    Article  CAS  Google Scholar 

  17. Xu W, Xu K, Viswanathan VV, et al. Reaction mechanisms for the limited reversibility of Li-O2 chemistry in organic carbonate electrolytes. J Power Sources, 2011, 196: 9631–9639

    Article  CAS  Google Scholar 

  18. Kang SY, Mo Y, Ong SP, et al. A facile mechanism for recharging Li2O2 in Li-O2 batteries. Chem Mater, 2013, 25: 3328–3336

    Article  CAS  Google Scholar 

  19. Bryantsev VS, Giordani V, Walker W, et al. Predicting solvent stability in aprotic electrolyte Li-air batteries: Nucleophilic substitution by the superoxide anion radical (O •−2 ). J Phys Chem A, 2011, 115: 12399–12409

    Article  CAS  Google Scholar 

  20. Zhai D, Lau KC, Wang HH, et al. The effect of potassium impurities deliberately introduced into activated carbon cathodes on the performance of lithium-oxygen batteries. ChemSusChem, 2015, 8: 4235–4241

    Article  CAS  Google Scholar 

  21. Mizuno F, Nakanishi S, Kotani Y, et al. Rechargeable Li-air batteries with carbonate-based liquid electrolytes. Electrochemistry, 2010, 78: 403–405

    Article  CAS  Google Scholar 

  22. Feng N, He P, Zhou H. Critical challenges in rechargeable aprotic Li-O2 batteries. Adv Energy Mater, 2016, 6: 1502303

    Article  CAS  Google Scholar 

  23. Liu QC, Xu JJ, Xu D, et al. Flexible lithium-oxygen battery based on a recoverable cathode. Nat Commun, 2015, 6: 7892

    Article  CAS  Google Scholar 

  24. Zhang P, Wang R, He M, et al. 3D hierarchical Co/CoO-graphene-carbonized melamine foam as a superior cathode toward long-life lithium oxygen batteries. Adv Funct Mater, 2016, 26: 1354–1364

    Article  CAS  Google Scholar 

  25. Mi R, Li S, Liu X, et al. Electrochemical performance of binder-free carbon nanotubes with different nitrogen amounts grown on the nickel foam as cathodes in Li-O2 batteries. J Mater Chem A, 2014, 2: 18746–18753

    Article  CAS  Google Scholar 

  26. Liu T, Leskes M, Yu W, et al. Cycling Li-O2 batteries via LiOH formation and decomposition. Science, 2015, 350: 530–533

    Article  CAS  Google Scholar 

  27. Huang S, Fan W, Guo X, et al. Positive role of surface defects on carbon nanotube cathodes in overpotential and capacity retention of rechargeable lithium oxygen batteries. ACS Appl Mater Interfaces, 2014, 6: 21567–21575

    Article  CAS  Google Scholar 

  28. Sun B, Huang X, Chen S, et al. Porous graphene nanoarchitectures: An efficient catalyst for low charge-overpotential, long life, and high capacity lithium oxygen batteries. Nano Lett, 2014, 14: 3145–3152

    Article  CAS  Google Scholar 

  29. Xiao J, Mei D, Li X, et al. Hierarchically porous graphene as a lithium air battery electrode. Nano Lett, 2011, 11: 5071–5078

    Article  CAS  Google Scholar 

  30. Wu G, Mack NH, Gao W, et al. Nitrogen-doped graphene-rich catalysts derived from heteroatom polymers for oxygen reduction in nonaqueous lithium-O2 battery cathodes. ACS Nano, 2012, 6: 9764–9776

    Article  CAS  Google Scholar 

  31. Yu L, Shen Y, Huang Y. FeNC catalyst modified graphene sponge as a cathode material for lithium-oxygen battery. J Alloys Compd, 2014, 595: 185–191

    Article  CAS  Google Scholar 

  32. Chen Y, Li F, Tang DM, et al. Multi-walled carbon nanotube papers as binder-free cathodes for large capacity and reversible non-aqueous Li-O2 batteries. J Mater Chem A, 2013, 1: 13076

    Article  CAS  Google Scholar 

  33. Lu YC, Xu Z, Gasteiger HA, et al. Platinum-gold nanoparticles: A highly active bifunctional electrocatalyst for rechargeable lithium -air batteries. J Am Chem Soc, 2010, 132: 12170–12171

    Article  CAS  Google Scholar 

  34. Xie J, Yao X, Madden IP, et al. Selective deposition of Ru nanoparticles on TiSi2 nanonet and its utilization for Li2O2 formation and decomposition. J Am Chem Soc, 2014, 136: 8903–8906

    Article  CAS  Google Scholar 

  35. Peng Z, Freunberger SA, Chen Y, et al. A reversible and higher-rate Li-O2 battery. Science, 2012, 337: 563–566

    Article  CAS  Google Scholar 

  36. Mohamed SG, Tsai YQ, Chen CJ, et al. Ternary spinel MCo2O4 (M = Mn, Fe, Ni, and Zn) porous nanorods as bifunctional cathode materials for lithium-O2 batteries. ACS Appl Mater Interfaces, 2015, 7: 12038–12046

    Article  CAS  Google Scholar 

  37. Li Y, Guo K, Li J, et al. Controllable synthesis of ordered mesoporous NiFe2O4 with tunable pore structure as a bifunctional catalyst for Li-O2 batteries. ACS Appl Mater Interfaces, 2014, 6: 20949–20957

    Article  CAS  Google Scholar 

  38. Wu B, Zhang H, Zhou W, et al. Carbon-free CoO mesoporous nanowire array cathode for high-performance aprotic Li-O2 batteries. ACS Appl Mater Interfaces, 2015, 7: 23182–23189

    Article  CAS  Google Scholar 

  39. Zhang P, Sun D, He M, et al. Synthesis of porous δ-MnO2 sub-micron tubes as highly efficient electrocatalyst for rechargeable Li-O2 batteries. ChemSusChem, 2015, 8: 1972–1979

    Article  CAS  Google Scholar 

  40. Shui J, Du F, Xue C, et al. Vertically aligned N-doped coral-like carbon fiber arrays as efficient air electrodes for high-performance nonaqueous Li-O2 batteries. ACS Nano, 2014, 8: 3015–3022

    Article  CAS  Google Scholar 

  41. Gong Y, Ding W, Li Z, et al. Inverse spinel cobalt-iron oxide and N-doped graphene composite as an efficient and durable bifuctional catalyst for Li-O2 batteries. ACS Catal, 2018, 8: 4082–4090

    Article  CAS  Google Scholar 

  42. Wang J, Wu ZX, Han LL, et al. Rational design of three-dimensional nitrogen and phosphorus co-doped graphene nanoribbons/CNTs composite for the oxygen reduction. Chin Chem Lett, 2016, 27: 597–601

    Article  CAS  Google Scholar 

  43. Zhao C, Yu C, Liu S, et al. 3D porous N-doped graphene frameworks made of interconnected nanocages for ultrahigh-rate and long-life Li-O2 batteries. Adv Funct Mater, 2015, 25: 6913–6920

    Article  CAS  Google Scholar 

  44. Thotiyl MMO, Freunberger SA, Peng Z, et al. The carbon electrode in nonaqueous Li-O2 cells. J Am Chem Soc, 2013, 135: 494–500

    Article  CAS  Google Scholar 

  45. Itkis DM, Semenenko DA, Kataev EY, et al. Reactivity of carbon in lithium-oxygen battery positive electrodes. Nano Lett, 2013, 13: 4697–4701

    Article  CAS  Google Scholar 

  46. Landa-Medrano I, Pinedo R, Ortiz-Vitoriano N, et al. Carbon-free cathodes: A step forward in the development of stable lithium-oxygen batteries. ChemSusChem, 2015, 8: 3932–3940

    Article  CAS  Google Scholar 

  47. Li F, Tang DM, Zhang T, et al. Superior performance of a Li-O2 battery with metallic RuO2 hollow spheres as the carbon-free cathode. Adv Energy Mater, 2015, 5: 1500294

    Article  CAS  Google Scholar 

  48. Jian Z, Liu P, Li F, et al. Core-shell-structured CNT@RuO2 composite as a high-performance cathode catalyst for rechargeable Li-O2 batteries. Angew Chem Int Ed, 2014, 53: 442–446

    Article  CAS  Google Scholar 

  49. Marques Mota F, Kang JH, Jung Y, et al. Mechanistic study revealing the role of the Br 3 /Br2 redox couple in CO2-assisted Li-O2 batteries. Adv Energy Mater, 2020, 10: 1903486

    Article  CAS  Google Scholar 

  50. Balaish M, Jung J, Kim I, et al. A critical review on functionalization of air-cathodes for nonaqueous Li-O2 batteries. Adv Funct Mater, 2019, 30: 1808303

    Article  CAS  Google Scholar 

  51. Wang L, Chen S, Hei J, et al. Ultrafine, high-loading and oxygen-deficient cerium oxide embedded on mesoporous carbon nanosheets for superior lithium-oxygen batteries. Nano Energy, 2020, 71: 104570

    Article  CAS  Google Scholar 

  52. Hong M, Choi HC, Byon HR. Nanoporous NiO plates with a unique role for promoted oxidation of carbonate and carboxylate species in the Li-O2 battery. Chem Mater, 2015, 27: 2234–2241

    Article  CAS  Google Scholar 

  53. Qiu D, Bu G, Zhao B, et al. In situ growth of mesoporous NiO nanoplates on a graphene matrix as cathode catalysts for rechargeable lithium-air batteries. Mater Lett, 2015, 141: 43–46

    Article  CAS  Google Scholar 

  54. Zhang PF, Lu YQ, Wu YJ, et al. High-performance rechargeable Li-CO2/O2 battery with Ru/N-doped CNT catalyst. Chem Eng J, 2019, 363: 224–233

    Article  CAS  Google Scholar 

  55. Zhang PF, Zhang JY, Sheng T, et al. Synergetic effect of Ru and NiO in the electrocatalytic decomposition of Li2CO3 to enhance the performance of a Li-CO2/O2 battery. ACS Catal, 2020, 10: 1640–1651

    Article  CAS  Google Scholar 

  56. Jing Y, Zhou Z. Computational insights into oxygen reduction reaction and initial Li2O2 nucleation on pristine and N-doped graphene in Li-O2 batteries. ACS Catal, 2015, 5: 4309–4317

    Article  CAS  Google Scholar 

  57. Li Z, Yang J, Agyeman DA, et al. CNT@Ni@Ni-Co silicate core-shell nanocomposite: a synergistic triple-coaxial catalyst for enhancing catalytic activity and controlling side products for Li-O2 batteries. J Mater Chem A, 2018, 6: 10447–10455

    Article  CAS  Google Scholar 

  58. Wohlfahrt-Mehrens M, Heitbaum J. Oxygen evolution on Ru and RuO2 electrodes studied using isotope labelling and on-line mass spectrometry. J Electroanal Chem Interf Electrochem, 1987, 237: 251–260

    Article  CAS  Google Scholar 

  59. Li F, Chen Y, Tang DM, et al. Performance-improved Li-O2 battery with Ru nanoparticles supported on binder-free multi-walled carbon nanotube paper as cathode. Energy Environ Sci, 2014, 7: 1648–1652

    Article  CAS  Google Scholar 

  60. Deng WQ, Xu X, Goddard WA. A two-stage mechanism of bimetallic catalyzed growth of single-walled carbon nanotubes. Nano Lett, 2004, 4: 2331–2335

    Article  CAS  Google Scholar 

  61. Su L, Zhou Z, Shen P. Ni/C hierarchical nanostructures with Ni nanoparticles highly dispersed in N-containing carbon nanosheets: Origin of Li storage capacity. J Phys Chem C, 2012, 116: 23974–23980

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21875197).

Author information

Authors and Affiliations

Authors

Contributions

Xiang C and Sheng W performed the experiments; Zhang S, Xiang C and Sheng W analyzed the results and wrote the paper; Sun S and Li J directed the project; Zhang P contributed to material synthesis. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Juntao Li  (李君涛) or Shigang Sun  (孙世刚).

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supplementary information

Supporting data are available in the online version of the paper.

Chengcheng Xiang received his BSc degree from the College of Chemistry and Environmental Engineering, Wuhan Polytechnic University in 2018. Now as a postgraduate at the College of Chemistry and Chemical Engineering, Xiamen University, his research mainly focuses on the preparation of cathode catalysts for Li-O2 batteries and the protection of lithium metal anodes for Li-O2 batteries.

Juntao Li received his PhD from Xiamen University. Now as a professor at the College of Energy, Xiamen University, his research contents include the preparation of electrode materials for lithium ion battery, investigation of interfacial processes of lithium ion battery, and electrochemical in situ Fourier transform infrared spectroscopy.

Shigang Sun received doctorat d’Etat from University of Paris VI. He is an academician of Chinese Academy of Sciences. His research interests include electrocatalysis, electrochemical interface, spectroelectrochemistry, nanomaterials, and energy electrochemistry (fuel cells, lithium batteries).

Supporting information

40843_2020_1632_MOESM1_ESM.pdf

RuO2 nanoparticles supported on Ni and N co-doped carbon nanotubes as an efficient bifunctional electrocatalyst of lithium-oxygen battery

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, C., Sheng, W., Zhang, P. et al. RuO2 nanoparticles supported on Ni and N co-doped carbon nanotubes as an efficient bifunctional electrocatalyst of lithium-oxygen battery. Sci. China Mater. 64, 2397–2408 (2021). https://doi.org/10.1007/s40843-020-1632-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-020-1632-9

Keywords

Navigation