Skip to main content
Log in

Nano-heterogeneity-stabilized and magnetic-interaction-modulated metallic glasses

纳米级不均匀性稳定和磁相互作用调控的金属玻璃

  • Letters
  • Published:
Science China Materials Aims and scope Submit manuscript

摘要

在金属玻璃中可控地引入不均匀性通常能大幅改善其性能, 甚至能突破传统合金设计方法的限制. 本文中, 我们发现在临界非晶形成能力条件下能获得高密度团簇, 且其强交换耦合作用可用于调控磁性能. 基于这些新理念, 我们开发了Fe71(Co, Ni)15B9.5Si2P2C0.5新合金. 由于钴/镍元素添加、团簇析出强化和少量多种类金属元素组合添加等四重强化机制, 合金的饱和磁感应强度达到1.86 T. 同时, 磁场热处理工艺的采用, 可以有效调控结构不均匀和磁畴取向的各向异性, 从而明显改善软磁性能. 此外, 由于临界条件制备平衡了非晶形成能力, 纳米团簇提高了非晶态的稳定性, 我们首次获得了兼具高磁感应强度、 优异软磁性能和非晶形成能力等优异综合性能的软磁非晶合金.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Li HX, Lu ZC, Wang SL, et al. Fe-based bulk metallic glasses: Glass formation, fabrication, properties and applications. Prog Mater Sci, 2019, 103: 235–318

    Article  CAS  Google Scholar 

  2. Herzer G. Modern soft magnets: Amorphous and nanocrystalline materials. Acta Mater, 2013, 61: 718–734

    Article  CAS  Google Scholar 

  3. Suryanarayana C, Inoue A. Iron-based bulk metallic glasses. Mater Rev, 2013, 58: 131–166

    Article  CAS  Google Scholar 

  4. Gutfleisch O, Willard MA, Brück E, et al. Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient. Adv Mater, 2011, 23: 821–842

    Article  CAS  Google Scholar 

  5. Silveyra JM, Ferrara E, Huber DL, et al. Soft magnetic materials for a sustainable and electrified world. Science, 2018, 362: eaao0195

    Article  Google Scholar 

  6. Liang X, He A, Wang A, et al. Fe content dependence of magnetic properties and bending ductility of FeSiBPC amorphous alloy ribbons. J Alloys Compd, 2017, 694: 1260–1264

    Article  CAS  Google Scholar 

  7. Yue S, Zhang H, Cheng R, et al. Magnetic and thermal stabilities of FeSiB eutectic amorphous alloys: Compositional effects. J Alloys Compd, 2019, 776: 833–838

    Article  CAS  Google Scholar 

  8. Johnson WL, Na JH, Demetriou MD. Quantifying the origin of metallic glass formation. Nat Commun, 2016, 7: 10313

    Article  CAS  Google Scholar 

  9. Wang A, Zhao C, He A, et al. Composition design of high Bs Fe-based amorphous alloys with good amorphous-forming ability. J Alloys Compd, 2016, 656: 729–734

    Article  CAS  Google Scholar 

  10. McHenry ME, Willard MA, Laughlin DE. Amorphous and nanocrystalline materials for applications as soft magnets. Prog Mater Sci, 1999, 44: 291–433

    Article  CAS  Google Scholar 

  11. Wang F, Inoue A, Han Y, et al. Excellent soft magnetic Fe-Co-B-based amorphous alloys with extremely high saturation magnetization above 1.85 T and low coercivity below 3 A/m. J Alloys Compd, 2017, 711: 132–142

    Article  CAS  Google Scholar 

  12. Zhu F, Hirata A, Liu P, et al. Correlation between local structure order and spatial heterogeneity in a metallic glass. Phys Rev Lett, 2017, 119: 215501

    Article  Google Scholar 

  13. Zhu F, Song S, Reddy KM, et al. Spatial heterogeneity as the structure feature for structure-property relationship of metallic glasses. Nat Commun, 2018, 9: 3965

    Article  Google Scholar 

  14. Zhang P, Maldonis JJ, Liu Z, et al. Spatially heterogeneous dynamics in a metallic glass forming liquid imaged by electron correlation microscopy. Nat Commun, 2018, 9: 1129

    Article  Google Scholar 

  15. Zhu F, Nguyen HK, Song SX, et al. Intrinsic correlation between β-relaxation and spatial heterogeneity in a metallic glass. Nat Commun, 2016, 7: 11516

    Article  CAS  Google Scholar 

  16. Liu YH, Wang G, Wang RJ, et al. Super plastic bulk metallic glasses at room temperature. Science, 2007, 315: 1385–1388

    Article  CAS  Google Scholar 

  17. Huo LS, Zeng JF, Wang WH, et al. The dependence of shear modulus on dynamic relaxation and evolution of local structural heterogeneity in a metallic glass. Acta Mater, 2013, 61: 4329–4338

    Article  CAS  Google Scholar 

  18. Liu YH, Wang D, Nakajima K, et al. Characterization of nanoscale mechanical heterogeneity in a metallic glass by dynamic force microscopy. Phys Rev Lett, 2011, 106: 125504

    Article  CAS  Google Scholar 

  19. Ketov SV, Sun YH, Nachum S, et al. Rejuvenation of metallic glasses by non-affine thermal strain. Nature, 2015, 524: 200–203

    Article  CAS  Google Scholar 

  20. Song W, Meng X, Wu Y, et al. Improving plasticity of the Zr46Cu46Al8 bulk metallic glass via thermal rejuvenation. Sci Bull, 2018, 63: 840–844

    Article  CAS  Google Scholar 

  21. Li W, Gao Y, Bei H. On the correlation between microscopic structural heterogeneity and embrittlement behavior in metallic glasses. Sci Rep, 2015, 5: 14786

    Article  CAS  Google Scholar 

  22. Ross P, Küchemann S, Derlet PM, et al. Linking macroscopic rejuvenation to nano-elastic fluctuations in a metallic glass. Acta Mater, 2017, 138: 111–118

    Article  CAS  Google Scholar 

  23. Qiao JC, Wang Q, Pelletier JM, et al. Structural heterogeneities and mechanical behavior of amorphous alloys. Prog Mater Sci, 2019, 104: 250–329

    Article  CAS  Google Scholar 

  24. Liu C, Maaß R. Elastic fluctuations and structural heterogeneities in metallic glasses. Adv Funct Mater, 2018, 28: 1800388

    Article  Google Scholar 

  25. Pan J, Wang YX, Guo Q, et al. Extreme rejuvenation and softening in a bulk metallic glass. Nat Commun, 2018, 9: 560

    Article  CAS  Google Scholar 

  26. Wang Q, Liu JJ, Ye YF, et al. Universal secondary relaxation and unusual brittle-to-ductile transition in metallic glasses. Mater Today, 2017, 20: 293–300

    Article  CAS  Google Scholar 

  27. Wang WH. Dynamic relaxations and relaxation-property relationships in metallic glasses. Prog Mater Sci, 2019, 106: 100561

    Article  CAS  Google Scholar 

  28. Zhang Y, Liu JP, Chen SY, et al. Serration and noise behaviors in materials. Prog Mater Sci, 2017, 90: 358–460

    Article  CAS  Google Scholar 

  29. Wang Q, Liu CT, Yang Y, et al. Atomic-scale structural evolution and stability of supercooled liquid of a Zr-based bulk metallic glass. Phys Rev Lett, 2011, 106: 215505

    Article  CAS  Google Scholar 

  30. Wang JQ, Chen N, Liu P, et al. The ultrastable kinetic behavior of an Au-based nanoglass. Acta Mater, 2014, 79: 30–36

    Article  CAS  Google Scholar 

  31. Yu H, Tylinski M, Guiseppi-Elie A, et al. Suppression of β relaxation in vapor-deposited ultrastable glasses. Phys Rev Lett, 2015, 115: 185501

    Article  CAS  Google Scholar 

  32. Gao M, Perepezko JH. Separating β relaxation from α relaxation in fragile metallic glasses based on ultrafast flash differential scanning calorimetry. Phys Rev Mater, 2020, 4: 025602

    Article  CAS  Google Scholar 

  33. Ma E. Tuning order in disorder. Nat Mater, 2015, 14: 547–552

    Article  CAS  Google Scholar 

  34. Wang Q, Zhang ST, Yang Y, et al. Unusual fast secondary relaxation in metallic glass. Nat Commun, 2015, 6: 7876

    Article  CAS  Google Scholar 

  35. Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater, 2000, 48: 279–306

    Article  CAS  Google Scholar 

  36. Xie Y, Sohn S, Wang M, et al. Supercluster-coupled crystal growth in metallic glass forming liquids. Nat Commun, 2019, 10: 915

    Article  CAS  Google Scholar 

  37. Schawe JEK, Löffler JF. Existence of multiple critical cooling rates which generate different types of monolithic metallic glass. Nat Commun, 2019, 10: 1337

    Article  Google Scholar 

  38. Yang Q, Peng SX, Wang Z, et al. Shadow glass transition as a thermodynamic signature of β relaxation in hyper-quenched metallic glasses. Natl Sci Rev, 2020, 7: 1896–1905

    Article  CAS  Google Scholar 

  39. Hirata A, Guan P, Fujita T, et al. Direct observation of local atomic order in a metallic glass. Nat Mater, 2011, 10: 28–33

    Article  CAS  Google Scholar 

  40. Liu XJ, Chen GL, Hou HY, et al. Atomistic mechanism for nanocrystallization of metallic glasses. Acta Mater, 2008, 56: 2760–2769

    Article  CAS  Google Scholar 

  41. Fan Y, Iwashita T, Egami T. Energy landscape-driven non-equilibrium evolution of inherent structure in disordered material. Nat Commun, 2017, 8: 15417

    Article  CAS  Google Scholar 

  42. Wang DP, Qiao JC, Liu CT. Relating structural heterogeneity to β relaxation processes in metallic glasses. Mater Res Lett, 2019, 7: 305–311

    Article  CAS  Google Scholar 

  43. Hu L, Zhang R, Chen Q. Synthesis and assembly of nanomaterials under magnetic fields. Nanoscale, 2014, 6: 14064–14105

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2016YFB0300501), the National Natural Science Foundation of China (51971186, 51771159, 51871056 and 51901041), and CityU grants (9360161 and 9680218) in Hong Kong.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Zhao C prepared the samples and conducted the experiments; Wang A and Liu CT designed the experiments and built the microstructure evolution model; He A and Chang C contributed to theoretical analysis; Zhao C and Wang A wrote the manuscript with the support of Liu CT. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Anding Wang  (王安定) or Chuntao Chang  (常春涛).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Chengliang Zhao received his PhD degree from Ningbo Institute of Materials Technology and Engineering, University of Chinese Academy of Sciences in 2018. Currently, he is an assistant professor at Dongguan University of Technology. His research interests focus on the magnetic properties and applications of Fe-based metallic glasses.

Anding Wang received his PhD degree from Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences in 2012. He continued to work there as assistant professor and associate professor in 2013–2018. He is currently a research fellow at the City University of Hong Kong. His research interests focus on the metallurgy, magnetism, microstructural kinetics and thermodynamics of amorphous, nanocrystalline and crystalline alloys for magnetic applications.

Chuntao Chang received his PhD degree from Tohoku University in 2008. He stayed there as a postdoctor until 2011. He worked as an associate professor at Tianjin University and Ningbo Institute of Materials Technology and Engineering (Chinese Academy of Sciences) in 2011–2017. He is currently a professor at Dongguan University of Technology. His research interests focus on the functional properties and applications of metallic glasses.

Supplementary Data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, C., Wang, A., He, A. et al. Nano-heterogeneity-stabilized and magnetic-interaction-modulated metallic glasses. Sci. China Mater. 64, 1813–1819 (2021). https://doi.org/10.1007/s40843-020-1593-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-020-1593-0

Navigation