Skip to main content
Log in

Sodium ion storage performance and mechanism in orthorhombic V2O5 single-crystalline nanowires

正交相V2O5单晶纳米线的钠离子存储性能及机理研究

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

A fundamental understanding of the electrochemical reaction process and mechanism of electrodes is very crucial for developing high-performance electrode materials. In this study, we report the sodium ion storage behavior and mechanism of orthorhombic V2O5 single-crystalline nanowires in the voltage window of 1.0–4.0 V (vs. Na/Na+). The single-crystalline nanowires exhibit a large irreversible capacity loss during the first discharge/charge cycle, and then show excellent cycling stability in the following cycles. At a current density of 100 mA g−1, the nanowires electrode delivers initial discharge/charge capacity of 217/88 mA h g−1, corresponding to a Coulombic efficiency of only 40.5%; after 100 cycles, the electrode remains a reversible discharge capacity of 78 mA h g−1 with a fading rate of only 0.09% per cycle compared with the 2nd cycle discharge capacity. The sodium ion storage mechanism was investigated, illustrating that the large irreversible capacity loss in the first cycle can be attributed to the initially formed single-crystalline α′-NaxV2O5 (0.02 < x < 0.88), in which sodium ions cannot be electrochemically extracted and the α′-Na0.88V2O5 can reversibly host and release sodium ions via a single-phase (solid solution) reaction, leading to excellent cycling stability. The Na+ diffusion coefficient in α′-NaxV2O5 ranges from 10−12 to 10−11.5 cm2 s−1 as evaluated by galvanostatic intermittent titration technique (GITT).

摘要

深入理解电极的电化学反应过程和机理对高性能电极材料 的设计、开发至关重要. 本文研究了正交相V2O5单晶纳米线在1.0–4.0 V (vs. Na/Na+)电位窗口下的钠离子存储行为和机理. 该单晶纳 米线在首次放电/充电循环中表现出高的不可逆容量损失, 在随后 的循环中表现出良好的循环稳定性. 在100 mA g−1电流密度下, 其 初始放电和充电比容量分别为217和88 mA h g−1, 对应的库伦效率 仅为40.5%. 经过100次循环后, 其可逆放电容量保持在78 mA h g−1, 与第二次放电容量相比其每圈循环衰减率仅为0.09%. 采用循环伏 安(CV)、非原位X-射线衍射(ex-situ XRD)、扫描电镜(SEM)和透 射电镜(TEM)表征, 分析了正交相V2O5单晶纳米线的钠离子存储 机理, 发现V2O5单晶纳米线在首次循环中的高不可逆容量损失主 要是因为其在放电过程中生成了钠离子无法脱出的α′-NaxV2O5 (0.02 < x< 0.88) 单晶相. 该α′-Na0.88V2O5可通过单相(固溶体)反应 可逆地嵌入和脱出钠离子, 因此在后续循环中表现出优异的稳定 性. 采用恒电流间歇电位滴定(GITT)分析发现, α′-NaxV2O5中钠离 子扩散系数值为10−12–10−11.5 cm2 s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zubi G, Dufo-López R, Carvalho M, et al. The lithium-ion battery: State of the art and future perspectives. Renew Sustain Energy Rev, 2018, 89: 292–308

    Google Scholar 

  2. Li M, Lu J, Chen Z, et al. 30 Years of lithium-ion batteries. Adv Mater, 2018, 30: 1800561

    Google Scholar 

  3. Massé RC, Uchaker E, Cao G. Beyond li-ion: Electrode materials for sodium- and magnesium-ion batteries. Sci China Mater, 2015, 58: 715–766

    Google Scholar 

  4. Vaalma C, Buchholz D, Weil M, et al. A cost and resource analysis of sodium-ion batteries. Nat Rev Mater, 2018, 3: 18013

    Google Scholar 

  5. Hwang JY, Myung ST, Sun YK. Sodium-ion batteries: Present and future. Chem Soc Rev, 2017, 46: 3529–3614

    CAS  Google Scholar 

  6. Su H, Jaffer S, Yu H. Transition metal oxides for sodium-ion batteries. Energy Storage Mater, 2016, 5: 116–131

    Google Scholar 

  7. Sun Y, Guo S, Zhou H. Exploration of advanced electrode materials for rechargeable sodium-ion batteries. Adv Energy Mater, 2018, 9: 1800212

    Google Scholar 

  8. Liu Q, Hu Z, Chen M, et al. Recent progress of layered transition metal oxide cathodes for sodium-ion batteries. Small, 2019, 15: 1805381

    Google Scholar 

  9. Zhao LN, Zhang T, Zhao HL, et al. Polyanion-type electrode materials for advanced sodium-ion batteries. Mater Today Nano, 2020, 10: 100072

    Google Scholar 

  10. Qian J, Wu C, Cao Y, et al. Prussian blue cathode materials for sodium-ion batteries and other ion batteries. Adv Energy Mater, 2018, 8: 1702619

    Google Scholar 

  11. Yin X, Sarkar S, Shi S, et al. Recent progress in advanced organic electrode materials for sodium-ion batteries: synthesis, mechanisms, challenges and perspectives. Adv Funct Mater, 2020, 30: 1908445

    CAS  Google Scholar 

  12. Wang Q, Xu J, Zhang W, et al. Research progress on vanadium-based cathode materials for sodium ion batteries. J Mater Chem A, 2018, 6: 8815–8838

    CAS  Google Scholar 

  13. Liu P, Zhu K, Gao Y, et al. Recent progress in the applications of vanadium-based oxides on energy storage: From low-dimensional nanomaterials synthesis to 3D micro/nano-structures and freestanding electrodes fabrication. Adv Energy Mater, 2017, 7: 1700547

    Google Scholar 

  14. Xu X, Xiong F, Meng J, et al. Vanadium-based nanomaterials: a promising family for emerging metal-ion batteries. Adv Funct Mater, 2020, 30: 1904398

    CAS  Google Scholar 

  15. Etman AS, Sun J, Younesi R. V2O5·nH2O nanosheets and multi-walled carbon nanotube composite as a negative electrode for sodium-ion batteries. J Energy Chem, 2019, 30: 145–151

    Google Scholar 

  16. Dong J, Jiang Y, Wei Q, et al. Strongly coupled pyridine-V2O5· nH2O nanowires with intercalation pseudocapacitance and stabilized layer for high energy sodium ion capacitors. Small, 2019, 15: 1900379

    Google Scholar 

  17. Cai Y, Fang G, Zhou J, et al. Metal-organic framework-derived porous shuttle-like vanadium oxides for sodium-ion battery application. Nano Res, 2018, 11: 449–463

    CAS  Google Scholar 

  18. Yao J, Li Y, Massé RC, et al. Revitalized interest in vanadium pentoxide as cathode material for lithium-ion batteries and beyond. Energy Storage Mater, 2018, 11: 205–259

    Google Scholar 

  19. Ali G, Lee JH, Oh SH, et al. Investigation of the Na intercalation mechanism into nanosized V2O5/C composite cathode material for Na-ion batteries. ACS Appl Mater Interfaces, 2016, 8: 6032–6039

    CAS  Google Scholar 

  20. West K. Sodium insertion in vanadium oxides. Solid State Ion, 1988, 28–30: 1128–1131

    Google Scholar 

  21. Su DW, Dou SX, Wang GX. Hierarchical orthorhombic V2O5 hollow nanospheres as high performance cathode materials for sodium-ion batteries. J Mater Chem A, 2014, 2: 11185–11194

    CAS  Google Scholar 

  22. Muller-Bouvet D, Baddour-Hadjean R, Tanabe M, et al. Electrochemically formed a’-NaV2O5: A new sodium intercalation compound. Electrochim Acta, 2015, 176: 586–593

    CAS  Google Scholar 

  23. Si H, Seidl L, Chu EML, et al. Impact of the morphology of V2O5 electrodes on the electrochemical Na-ion intercalation. J Electrochem Soc, 2018, 165: A2709–A2717

    CAS  Google Scholar 

  24. Zhai T, Liu H, Li H, et al. Centimeter-long V2O5 nanowires: From synthesis to field-emission, electrochemical, electrical transport, and photoconductive properties. Adv Mater, 2010, 22: 2547–2552

    CAS  Google Scholar 

  25. Zhou F, Zhao X, Yuan C, et al. Vanadium pentoxide nanowires: Hydrothermal synthesis, formation mechanism, and phase control parameters. Cryst Growth Des, 2007, 8: 723–727

    Google Scholar 

  26. Li Y, Yao J, Uchaker E, et al. Sn-doped V2O5 film with enhanced lithium-ion storage performance. J Phys Chem C, 2013, 117: 23507–23514

    CAS  Google Scholar 

  27. Yao JH, Yin ZL, Zou ZG, et al. Y-doped V2O5 with enhanced lithium storage performance. RSC Adv, 2017, 7: 32327–32335

    CAS  Google Scholar 

  28. Li Y, Liu C, Xie Z, et al. Superior sodium storage performance of additive-free V2O5 thin film electrodes. J Mater Chem A, 2017, 5: 16590–16594

    CAS  Google Scholar 

  29. Liu Y, Clark M, Zhang Q, et al. V2O5 nano-electrodes with high power and energy densities for thin film Li-ion batteries. Adv Energy Mater, 2011, 1: 194–202

    CAS  Google Scholar 

  30. Fontenot CJ, Wiench JW, Pruski M, et al. Vanadia gel synthesis via peroxovanadate precursors. 1. In situ laser Raman and 51V NMR characterization of the gelation process. J Phys Chem B, 2000, 104: 11622–11631

    CAS  Google Scholar 

  31. Rui X, Tang Y, Malyi OI, et al. Ambient dissolution-recrystallization towards large-scale preparation of V2O5 nanobelts for high-energy battery applications. Nano Energy, 2016, 22: 583–593

    CAS  Google Scholar 

  32. Petkov V, Trikalitis PN, Bozin ES, et al. Structure of V2O5·nH2O xerogel solved by the atomic pair distribution function technique. J Am Chem Soc, 2002, 124: 10157–10162

    CAS  Google Scholar 

  33. Dewangan K, Sinha NN, Chavan PG, et al. Synthesis and characterization of self-assembled nanofiber-bundles of V2O5: Their electrochemical and field emission properties. Nanoscale, 2012, 4: 645–651

    CAS  Google Scholar 

  34. Mai L, Xu L, Han C, et al. Electrospun ultralong hierarchical vanadium oxide nanowires with high performance for lithium ion batteries. Nano Lett, 2010, 10: 4750–4755

    CAS  Google Scholar 

  35. Takahashi K, Limmer SJ, Wang Y, et al. Synthesis and electrochemical properties of single-crystal V2O5 nanorod arrays by template-based electrodeposition. J Phys Chem B, 2004, 108: 9795–9800

    CAS  Google Scholar 

  36. Shi S, Cao M, He X, et al. Surfactant-assisted hydrothermal growth of single-crystalline ultrahigh-aspect-ratio vanadium oxide nanobelts. Cryst Growth Des, 2007, 7: 1893–1897

    CAS  Google Scholar 

  37. Pan S, Chen L, Li Y, et al. Disodium citrate-assisted hydrothermal synthesis of V2O5 nanowires for high performance supercapacitors. RSC Adv, 2018, 8: 3213–3217

    CAS  Google Scholar 

  38. Van Nghia N, Long PD, Tan TA, et al. Electrochemical performance of a V2O5 cathode for a sodium ion battery. J Electr Materi, 2017, 46: 3689–3694

    Google Scholar 

  39. Leger C, Bach S, Soudan P, et al. Structural and electrochemical properties of ω-LixV2O5 (0.4≤x≤3) as rechargeable cathodic material for lithium batteries. J Electrochem Soc, 2005, 152: A236

    CAS  Google Scholar 

  40. Li Y, Huang Y, Zheng Y, et al. Facile and efficient synthesis of α-Fe2O3 nanocrystals by glucose-assisted thermal decomposition method and its application in lithium ion batteries. J Power Sources, 2019, 416: 62–71

    CAS  Google Scholar 

  41. Huang Y, Li Y, Huang R, et al. Ternary Fe2O3/Fe3O4/FeCO3 composite as a high-performance anode material for lithium-ion batteries. J Phys Chem C, 2019, 123: 12614–12622

    CAS  Google Scholar 

  42. Wang J, Luo N, Wu J, et al. Hierarchical spheres constructed by ultrathin VS2 nanosheets for sodium-ion batteries. J Mater Chem A, 2019, 7: 3691–3696

    CAS  Google Scholar 

  43. Luo Y, Xu X, Tian X, et al. Facile synthesis of a Co3V2O8 interconnected hollow microsphere anode with superior high-rate capability for Li-ion batteries. J Mater Chem A, 2016, 4: 5075–5080

    CAS  Google Scholar 

  44. Zhen M, Guo X, Gao G, et al. Rutile TiO2 nanobundles on reduced graphene oxides as anode materials for Li ion batteries. Chem Commun, 2014, 50: 11915–11918

    CAS  Google Scholar 

  45. Liu X, Zhang J, Si W, et al. High-rate amorphous SnO2 nanomembrane anodes for Li-ion batteries with a long cycling life. Nanoscale, 2015, 7: 282–288

    CAS  Google Scholar 

  46. Ou X, Li J, Zheng F, et al. In situ X-ray diffraction characterization of NiSe2 as a promising anode material for sodium ion batteries. J Power Sources, 2017, 343: 483–491

    CAS  Google Scholar 

  47. Wei Q, Liu J, Feng W, et al. Hydrated vanadium pentoxide with superior sodium storage capacity. J Mater Chem A, 2015, 3: 8070–8075

    CAS  Google Scholar 

  48. Raju V, Rains J, Gates C, et al. Superior cathode of sodium-ion batteries: orthorhombic V2O5 nanoparticles generated in nanoporous carbon by ambient hydrolysis deposition. Nano Lett, 2014, 14: 4119–4124

    CAS  Google Scholar 

  49. Uchaker E, Cao G. The role of intentionally introduced defects on electrode materials for alkali-ion batteries. Chem Asian J, 2015, 10: 1608–1617

    CAS  Google Scholar 

  50. Maier J. Review—battery materials: Why defect chemistry? J Electrochem Soc, 2015, 162: A2380–A2386

    CAS  Google Scholar 

  51. Liu Y, Liu D, Zhang Q, et al. Engineering nanostructured electrodes away from equilibrium for lithium-ion batteries. J Mater Chem, 2011, 21: 9969–9983

    CAS  Google Scholar 

  52. Qin M, Liang Q, Pan A, et al. Template-free synthesis of vanadium oxides nanobelt arrays as high-rate cathode materials for lithium ion batteries. J Power Sources, 2014, 268: 700–705

    CAS  Google Scholar 

  53. Liang S, Hu Y, Nie Z, et al. Template-free synthesis of ultra-large V2O5 nanosheets with exceptional small thickness for high-performance lithium-ion batteries. Nano Energy, 2015, 13: 58–66

    CAS  Google Scholar 

  54. An Q, Wei Q, Zhang P, et al. Three-dimensional interconnected vanadium pentoxide nanonetwork cathode for high-rate long-life lithium batteries. Small, 2015, 11: 2654–2660

    CAS  Google Scholar 

  55. Carrasco J. Role of van der Waals forces in thermodynamics and kinetics of layered transition metal oxide electrodes: alkali and alkaline-earth ion insertion into V2O5. J Phys Chem C, 2014, 118: 19599–19607

    CAS  Google Scholar 

  56. Liu J, Wang J, Xu C, et al. Advanced energy storage devices: Basic principles, analytical methods, and rational materials design. Adv Sci, 2018, 5: 1700322

    Google Scholar 

  57. Liu C, Yao J, Zou Z, et al. Boosting the cycling stability of hydrated vanadium pentoxide by Y3+ pillaring for sodium-ion batteries. Mater Today Energy, 2019, 11: 218–227

    Google Scholar 

  58. Wang L, Wang Y, Zhao Y. Freeze-drying method to synthesize V2O5/graphene composites toward enhanced sodium ion storage. Ceramics Int, 2018, 44: 23279–23283

    CAS  Google Scholar 

  59. Lim SJ, Han DW, Nam DH, et al. Structural enhancement of Na3V2(PO4)3/C composite cathode materials by pillar ion doping for high power and long cycle life sodium-ion batteries. J Mater Chem A, 2014, 2: 19623–19632

    CAS  Google Scholar 

  60. Shang C, Hu L, Lin Q, et al. Integration of NaV6O15·nH2O nanowires and rGO as cathode materials for efficient sodium storage. Appl Surf Sci, 2019, 494: 458–464

    CAS  Google Scholar 

  61. Song X, Li J, Li Z, et al. Superior sodium storage of carbon-coated NaV6O15 nanotube cathode: pseudocapacitance versus intercalation. ACS Appl Mater Interfaces, 2019, 11: 10631–10641

    CAS  Google Scholar 

  62. Pereira-Ramos JP, Messina R, Perichon J. Electrochemical formation of vanadium pentoxide bronzes MxV2O5 in molten dimethylsulfone. J Electrochem Soc, 1988, 135: 3050–3057

    CAS  Google Scholar 

  63. Ma W, Zhang C, Liu C, et al. Impacts of surface energy on lithium ion intercalation properties of V2O5. ACS Appl Mater Interfaces, 2016, 8: 19542–19549

    CAS  Google Scholar 

  64. Uchaker E, Zheng YZ, Li S, et al. Better than crystalline: Amorphous vanadium oxide for sodium-ion batteries. J Mater Chem A, 2014, 2: 18208–18214

    CAS  Google Scholar 

  65. Zhu Y, Gao T, Fan X, et al. Electrochemical techniques for intercalation electrode materials in rechargeable batteries. Acc Chem Res, 2017, 50: 1022–1031

    CAS  Google Scholar 

  66. Weppner W, Huggins RA. Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li3Sb. J Electrochem Soc, 1977, 124: 1569–1578

    CAS  Google Scholar 

  67. Lee JH, Kim JM, Kim JH, et al. Toward ultrahigh-capacity V2O5 lithium-ion battery cathodes via one-pot synthetic route from precursors to electrode sheets. Adv Mater Interfaces, 2016, 3: 1600173

    Google Scholar 

  68. Attias R, Salama M, Hirsch B, et al. Solvent effects on the reversible intercalation of magnesium-ions into V2O5 electrodes. ChemElectroChem, 2018, 5: 3514–3524

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51664012), Guangxi Natural Science Foundation (2017GXNSFAA198117 and 2015GXNSFGA139006), and the Technology Major Project of Guangxi (AA19046001).

Author information

Authors and Affiliations

Authors

Contributions

Li Y, Yao J, and Cao G conceived the idea and data analysis. Ji J and Zhang Y performed the experiments. Li Y and Yao J wrote the paper with support from Cao G. Huang B helped to discuss partial experimental data. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Jinhuan Yao  (姚金环) or Guozhong Cao  (曹国忠).

Additional information

Conflict of interest

The authors declare no conflict of interest.

Yanwei Li is a professor at the College of Chemistry and Bioengineering, Guilin University of Technology. He received his PhD from Harbin Institue of Technology in 2007. His current research interests lie in the design, synthesis, and characterization of advanced materials for Li/Na/Mg-ion batteries.

Jinhuan Yao is a professor at the College of Chemistry and Bioengineering, Guilin University of Technology. She received her PhD in chemical technology from Guangxi University in 2013. Her current research interests focus on the synthesis of metal oxides and their composites for energy storage devices.

Guozhong Cao is a Boeing-Steiner professor of materials science and engineering, professor of chemical engineering and adjunct professor of mechanical engineering at the University of Washington. He is one of Thomson Reuters Highly Cited Researchers and his current research is focused on chemical processing of nanomaterials for solar cells, batteries, and supercapacitors as well as actuators and sensors for aviation and biomedical applications.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Ji, J., Yao, J. et al. Sodium ion storage performance and mechanism in orthorhombic V2O5 single-crystalline nanowires. Sci. China Mater. 64, 557–570 (2021). https://doi.org/10.1007/s40843-020-1468-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-020-1468-6

Keywords

Navigation