Skip to main content
Log in

Non-noble metal single-atom catalysts with phosphotungstic acid (PTA) support: A theoretical study of ethylene epoxidation

磷钨酸负载的非贵金属单原子催化剂: 乙烯环氧化的理论研究

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Geometric and electronic structures of phosphotungstic acid (PTA) supported single transition metal atom (Fe, Co, Ni, Ru, Rh, Pd, Os, Ir and Pt) catalysts have been systematically investigated by using the first-principles theoretical methods. Possible reaction mechanism for ethylene epoxidation was explored. The most possible anchoring site for the single transition metal atom is the fourfold hollow site on PTA. As the non-noble metal Fe1-PTA system possesses considerable adsorption energies towards both O2 and C2H4, the strong bonding interaction between Fe1 and PTA cluster was analyzed. It is found that the electron transfers from Fe atom to PTA cluster and strong covalent metal-support interactions (CMSI) between the Fe 3d orbitals and O 2p orbitals of PTA lay the foundation of high stability. The proposed catalytic reaction mechanism for ethylene epoxidation on Fe1- PTA single-atom catalyst (SAC) includes three steps: the O2 adsorbs on Fe1-PTA via electron transfer; the first ethylene attacks the adsorbed O2 molecule on Fe1-PTA followed by the formation of C2H4O; finally, the O atom remained on Fe1-PTA reacts with a second ethylene to form the product and accomplish the catalytic cycle. The Fe1-PTA has high selectivity and catalytic activity for ethylene epoxidation via an Eley–Rideal mechanism with low energy barriers. A potentially competitive pathway for the formation of acetaldehyde is not kinetically favorable. These results provide insights for the development of highly efficient heterogeneous SACs for ethylene epoxidation with non-noble metals.

摘要

基于第一性原理, 本文系统研究了过渡金属单原子(铁, 钴, 镍, 钌, 铑, 钯, 锇, 铱, 铂)负载在磷钨酸(PTA)催化剂上的几何和电子结构, 并进一步研究了乙烯环氧化在铁单原子催化剂上的可能反应机理. 我们发现PTA最可能结合过渡金属单原子的位置是四配位中空位. 乙烯环氧化催化活性的理论计算表明, 非贵金属Fe1-PTA具有可观的吸附能, 这是引发此催化循环的关键物理量. 我们进一步进行了铁单原子和PTA结合的成键分析, 发现电荷从铁单原子转移到PTA团簇, 并且强烈的Fe–O共价金属-载体相互作用(CMSI)是其高稳定性的基础. 在催化剂Fe1-PTA上可能的乙烯环氧化催化机理共包括三步: 1) 氧气分子通过电荷转移吸附在Fe1-PTA 上; 2) 第一个乙烯分子攻击吸附在Fe1-PTA上的氧气分子, 随后形成C2H4O; 3) 表面吸附的氧原子和第二个乙烯分子生成C2H4O, 完成催化循环. 本研究发现, Fe1-PTA对于乙烯环氧化主要通过Eley-Rideal 机理进行. 本工作为发展高效多相非贵金属单原子乙烯环氧化催化剂提供了理论依据.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qiao B, Wang A, Yang X, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat Chem, 2011, 3: 634–641

    Article  CAS  Google Scholar 

  2. Yang XF, Wang A, Qiao B, et al. Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc Chem Res, 2013, 46: 1740–1748

    Article  CAS  Google Scholar 

  3. Wang A, Li J, Zhang T. Heterogeneous single-atom catalysis. Nat Rev Chem, 2018, 2: 65–81

    Article  CAS  Google Scholar 

  4. Liu J. Catalysis by supported single metal atoms. ACS Catal, 2017, 7: 34–59

    Article  CAS  Google Scholar 

  5. Liu JC, Tang Y, Wang YG, et al. Theoretical understanding of the stability of single-atom catalysts. Natl Sci Rev, 2018, 5: 638–641

    Article  CAS  Google Scholar 

  6. Liu JC, Wang YG, Li J. Toward rational design of oxide-supported single-atom catalysts: atomic dispersion of gold on ceria. J Am Chem Soc, 2017, 139: 6190–6199

    Article  CAS  Google Scholar 

  7. Giannakakis G, Flytzani-Stephanopoulos M, Sykes ECH. Singleatom alloys as a reductionist approach to the rational design of heterogeneous catalysts. Acc Chem Res, 2019, 52: 237–247

    Article  CAS  Google Scholar 

  8. Hulsey MJ, Zhang J, Yan N. Harnessing the wisdom in colloidal chemistry to make stable single-atom catalysts. Adv Mater, 2018, 30: 1802304

    Article  CAS  Google Scholar 

  9. Qin R, Liu P, Fu G, et al. Strategies for stabilizing atomically dispersed metal catalysts. Small Methods, 2018, 2: 1700286

    Article  CAS  Google Scholar 

  10. Qiao B, Liang JX, Wang A, et al. Ultrastable single-atom gold catalysts with strong covalent metal-support interaction (CMSI). Nano Res, 2015, 8: 2913–2924

    Article  CAS  Google Scholar 

  11. Lin J, Wang A, Qiao B, et al. Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction. J Am Chem Soc, 2013, 135: 15314–15317

    Article  CAS  Google Scholar 

  12. Long B, Tang Y, Li J. New mechanistic pathways for CO oxidation catalyzed by single-atom catalysts: supported and doped Au1/ThO2. Nano Res, 2016, 9: 3868–3880

    Article  CAS  Google Scholar 

  13. Liang JX, Yang XF, Wang A, et al. Theoretical investigations of non-noble metal single-atom catalysis: Ni1/FeOx for CO oxidation. Catal Sci Technol, 2016, 6: 6886–6892

    Article  CAS  Google Scholar 

  14. Deng T, Zheng W, Zhang W. Increasing the range of non-noblemetal single-atom catalysts. Chin J Catal, 2017, 38: 1489–1497

    Article  CAS  Google Scholar 

  15. Liu W, Zhang H, Li C, et al. Non-noble metal single-atom catalysts prepared by wet chemical method and their applications in electrochemical water splitting. J Energy Chem, 2020, 47: 333–345

    Article  Google Scholar 

  16. Gebbink R J K, Moret M E. Non-noble Metal Catalysis: Molecular Approaches and Reactions. Weinheim: John Wiley & Sons, 2019

    Book  Google Scholar 

  17. Lv CQ, Liu JH, Guo Y, et al. DFT + U investigation on the adsorption and initial decomposition of methylamine by a Pt singleatom catalyst supported on rutile (110) TiO2. Appl Surf Sci, 2016, 389: 411–418

    Article  CAS  Google Scholar 

  18. Song Z, Li W, Niu F, et al. A novel method to decorate Au clusters onto graphene via a mild Co-reduction process for ultrahigh catalytic activity. J Mater Chem A, 2017, 5: 230–239

    Article  CAS  Google Scholar 

  19. Kwak JH, Lee J, Szanyi J, et al. Modification of the acid/base properties of γ-Al2O3 by oxide additives: An ethanol TPD investigation. Catal Today, 2016, 265: 240–244

    Article  CAS  Google Scholar 

  20. Peterson EJ, De LaRiva AT, Lin S, et al. Low-temperature carbon monoxide oxidation catalysed by regenerable atomically dispersed palladium on alumina. Nat Commun, 2014, 5: 4885

    Article  CAS  Google Scholar 

  21. Li J, Liu J, Zhang T. Preface to the special issue of the international symposium on single-atom catalysis (ISSAC-2016). Chin J Catal, 2017, 38: 1431

    Article  CAS  Google Scholar 

  22. Liang JX, Wang YG, Yang XF, et al. Recent advances in singleatom catalysis. Encyclopedia Inorg Bioinorg Chem, 2011, 1–11

    Google Scholar 

  23. Zheng N, Zhang T. Preface: single-atom catalysts as a new generation of heterogeneous catalysts. Natl Sci Rev, 2018, 5: 625

    Article  Google Scholar 

  24. Liu L, Corma A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem Rev, 2018, 118: 4981–5079

    Article  CAS  Google Scholar 

  25. Chen Y, Ji S, Chen C, et al. Single-atom catalysts: synthetic strategies and electrochemical applications. Joule, 2018, 2: 1242–1264

    Article  CAS  Google Scholar 

  26. Jones TE, Wyrwich R, Bocklein S, et al. The selective species in ethylene epoxidation on silver. ACS Catal, 2018, 8: 3844–3852

    Article  CAS  Google Scholar 

  27. Ozbek MO, Onal I, van Santen RA. Ethylene epoxidation catalyzed by silver oxide. ChemCatChem, 2011, 3: 150–153

    Article  CAS  Google Scholar 

  28. Christopher P, Linic S. Engineering selectivity in heterogeneous catalysis: Ag nanowires as selective ethylene epoxidation catalysts. J Am Chem Soc, 2008, 130: 11264–11265

    Article  CAS  Google Scholar 

  29. Linic S, Barteau MA. Control of ethylene epoxidation selectivity by surface oxametallacycles. J Am Chem Soc, 2003, 125: 4034–4035

    Article  CAS  Google Scholar 

  30. van Hoof AJF, Filot IAW, Friedrich H, et al. Reversible restructuring of silver particles during ethylene epoxidation. ACS Catal, 2018, 8: 11794–11800

    Article  CAS  Google Scholar 

  31. Lopez X, Carbo JJ, Bo C, et al. Structure, properties and reactivity of polyoxometalates: A theoretical perspective. Chem Soc Rev, 2012, 41: 7537

    Article  CAS  Google Scholar 

  32. Hossain MM, Aldous L. Polyoxometalates as solution-phase electrocatalytic mediators for reduced electrode fouling and the improved oxidative response of phenols. Electrochem Commun, 2016, 69: 32–35

    Article  CAS  Google Scholar 

  33. Mei Y, Huang W, Yang Z, et al. Ion-pairing and aggregation of ionic liquid-neutralized polyoxometalate salts in aqueous solutions. Fluid Phase Equilib, 2016, 425: 31–39

    Article  CAS  Google Scholar 

  34. Wen S, Guan W, Wang J, et al. Theoretical investigation of structural and electronic propertyies of [PW12O40]3− on graphene layer. Dalton Trans, 2012, 41: 4602–4607

    Article  CAS  Google Scholar 

  35. Xie L, Jiang R, Zhu F, et al. Application of functionalized magnetic nanoparticles in sample preparation. Anal Bioanal Chem, 2014, 406: 377–399

    Article  CAS  Google Scholar 

  36. Hill CL. Introduction: Polyoxometalates multicomponent molecular vehicles to probe fundamental issues and practical problems. Chem Rev, 1998, 98: 1–2

    Article  CAS  Google Scholar 

  37. Dolbecq A, Dumas E, Mayer CR, et al. Hybrid organic−inorganic polyoxometalate compounds: from structural diversity to applications. Chem Rev, 2010, 110: 6009–6048

    Article  CAS  Google Scholar 

  38. Zhang Z, Wang YL, Yang GY. Two inorganic-organic hybrid polyoxotungstates constructed from tetra-ZrIV-substituted sandwich- type germanotungstates functionalized by tris ligand. InOrg Chem Commun, 2017, 85: 32–36

    Article  CAS  Google Scholar 

  39. Coperet C, Comas-Vives A, Conley MP, et al. Surface organometallic and coordination chemistry toward single-site heterogeneous catalysts: strategies, methods, structures, and activities. Chem Rev, 2016, 116: 323–421

    Article  CAS  Google Scholar 

  40. Laird T. Dangers of the unknown. Org Process Res Dev, 2003, 7: 225

    Article  CAS  Google Scholar 

  41. Tanielyan SK, Augustine RL, Marin N, et al. Anchored Wilkinson catalyst. ACS Catal, 2011, 1: 159–169

    Article  CAS  Google Scholar 

  42. Song CE, Lee SG. Supported chiral catalysts on inorganic materials. Chem Rev, 2002, 102: 3495–3524

    Article  CAS  Google Scholar 

  43. Wu Y, Wang D, Li Y. Understanding of the major reactions in solution synthesis of functional nanomaterials. Sci China Mater, 2016, 59: 938–996

    Article  CAS  Google Scholar 

  44. Allen DT. Luque, Yan, You: 2018 winners of the ACS Sustainable Chemistry & Engineering lectureship awards. ACS Sustain Chem Eng, 2017, 5: 7450

    Article  CAS  Google Scholar 

  45. Roithova J, Schroder D. Selective activation of alkanes by gas-phase metal ions. Chem Rev, 2010, 110: 1170–1211

    Article  CAS  Google Scholar 

  46. Mallat T, Baiker A. Oxidation of alcohols with molecular oxygen on solid catalysts. Chem Rev, 2004, 104: 3037–3058

    Article  CAS  Google Scholar 

  47. Zhang Z, Qu Y, Wang S, et al. Theoretical study on the mechanisms of the conversion of methyl lactate over sodium polyphosphate catalyst. J Mol Catal A-Chem, 2010, 323: 91–100

    Article  CAS  Google Scholar 

  48. Yang X, Waters T, Wang XB, et al. Photoelectron spectroscopy of free polyoxoanions M6O192− and W6O192− in the gas phase. J Phys Chem A, 2004, 108: 10089–10093

    Article  CAS  Google Scholar 

  49. Li J. Electronic structures, (d-p) π conjugation effects, and spectroscopic properties of polyoxometalates: M6O192− (M = Cr, Mo, W). J Cluster Sci, 2002, 13: 137–163

    Article  CAS  Google Scholar 

  50. Lopez X, Maestre JM, Bo C, et al. Electronic properties of polyoxometalates: A DFT study of α/β-[XM12O40]n− relative stability (M = W, Mo and X a main group element). J Am Chem Soc, 2001, 123: 9571–9576

    Article  CAS  Google Scholar 

  51. He P, Xu B, Xu X, et al. Surfactant encapsulated palladium-polyoxometalates: controlled assembly and their application as singleatom catalysts. Chem Sci, 2016, 7: 1011–1015

    Article  CAS  Google Scholar 

  52. Zhang B, Asakura H, Yan N. Atomically dispersed rhodium on self-assembled phosphotungstic acid: structural features and catalytic CO oxidation properties. Ind Eng Chem Res, 2017, 56: 3578–3587

    Article  CAS  Google Scholar 

  53. Zhang B, Asakura H, Zhang J, et al. Stabilizing a platinum1 singleatom catalyst on supported phosphomolybdic acid without compromising hydrogenation activity. Angew Chem Int Ed, 2016, 55: 8319–8323

    Article  CAS  Google Scholar 

  54. Hulsey MJ, Zhang B, Ma Z, et al. In situ spectroscopy-guided engineering of rhodium single-atom catalysts for CO oxidation. Nat Commun, 2019, 10: 1330

    Article  CAS  Google Scholar 

  55. Zhang B, Sun G, Ding S, et al. Atomically dispersed Pt1–poly- oxometalate catalysts: How does metal–support interaction affect stability and hydrogenation activity? J Am Chem Soc, 2019, jacs.9b00486

    Google Scholar 

  56. Yu MA, Feng Y, Gao L, et al. Phosphomolybdic acid supported single-metal-atom catalysis in CO oxidation: First-principles calculations. Phys Chem Chem Phys, 2018, 20: 20661–20668

    Article  CAS  Google Scholar 

  57. Kozhevnikov IV. Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions. Chem Rev, 1998, 98: 171–198

    Article  CAS  Google Scholar 

  58. Yue ZC, Du HJ, Li L, et al. Synthesis and characterization of two new polymolybdate clusters containing chlorine based on Mo-POMs and N-heterocycle templates. Synthesis Reactivity InOrg Metal-Org Nano-Metal Chem, 2014, 44: 678–686

    Article  CAS  Google Scholar 

  59. Tessonnier JP, Goubert-Renaudin S, Alia S, et al. Structure, stability, and electronic interactions of polyoxometalates on functionalized graphene sheets. Langmuir, 2013, 29: 393–402

    Article  CAS  Google Scholar 

  60. Matthey J, Aesar A. PGMs in the lab: Platinum group metals in polyoxometalates. Platinum Met Rev, 2014, 58: 40–41

    Article  CAS  Google Scholar 

  61. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1997, 77: 3865–3868

    Article  Google Scholar 

  62. Kresse G, Furthmuller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci, 1996, 6: 15–50

    Article  CAS  Google Scholar 

  63. Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys Rev B, 1993, 47: 558–561

    Article  CAS  Google Scholar 

  64. Kresse G. Ab initio molecular dynamics for liquid metals. J Non- Crystalline Solids, 1995, 192–193: 222–229

    Article  Google Scholar 

  65. Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B, 1999, 59: 1758–1775

    Article  CAS  Google Scholar 

  66. Blochl PE. Projector augmented-wave method. Phys Rev B, 1994, 50: 17953–17979

    Article  CAS  Google Scholar 

  67. Perdew JP, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B, 1992, 45: 13244–13249

    Article  CAS  Google Scholar 

  68. Tang W, Sanville E, Henkelman G. A grid-based Bader analysis algorithm without lattice bias. J Phys-Condens Matter, 2009, 21: 084204

    Article  CAS  Google Scholar 

  69. Yu M, Trinkle DR. Accurate and efficient algorithm for Bader charge integration. J Chem Phys, 2011, 134: 064111

    Article  CAS  Google Scholar 

  70. Henkelman G, Jonsson H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J Chem Phys, 2000, 113: 9978–9985

    Article  CAS  Google Scholar 

  71. Henkelman G, Uberuaga BP, Jonsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys, 2000, 113: 9901–9904

    Article  CAS  Google Scholar 

  72. Henkelman G, Jonsson H. A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J Chem Phys, 1999, 111: 7010–7022

    Article  CAS  Google Scholar 

  73. Kastner J, Sherwood P. Superlinearly converging dimer method for transition state search. J Chem Phys, 2008, 128: 014106

    Article  CAS  Google Scholar 

  74. Su J, Hu S, Huang W, et al. On the oxidation states of metal elements in MO3 − (M=V, Nb, Ta, Db, Pr, Gd, Pa) anions. Sci China Chem, 2016, 59: 442–451

    Article  CAS  Google Scholar 

  75. Ma XL, Liu JC, Xiao H, et al. Surface single-cluster catalyst for N2-to-NH3 thermal conversion. J Am Chem Soc, 2018, 140: 46–49

    Article  CAS  Google Scholar 

  76. Liu JC, Ma XL, Li Y, et al. Heterogeneous Fe3 single-cluster catalyst for ammonia synthesis via an associative mechanism. Nat Commun, 2018, 9: 1610

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Na Acknowledgements This work was financially supported by the National Natural Science Foundation of China (21590792, 91426302 and 21433005) to Li J. The support from Guangdong Provincial Key Laboratory of Catalysis (2020B121201002) is also acknowledged. The calculations were performed using supercomputers at Tsinghua National Laboratory for Information Science and Technology. Yu X thanks for the Special Funding for Transformation of Scientific and Technological Achievements in Qinghai Province (2018-GX-101), and the Natural Science Basic Research Program of Shaanxi Province (2019JM-226).

Author information

Authors and Affiliations

Authors

Contributions

Li J designed the research. Talib SH and Yu X performed the calculations. Talib SH, Yu X, Yu Q, Baskaran S, and Li J interpreted the data. Talib SH, Yu X, Yu Q and Li J co-wrote and revised the manuscript.

Corresponding authors

Correspondence to Xiaohu Yu  (于小虎) or Jun Li  (李隽).

Additional information

Conflict of interest

The authors declare no conflict of interest.

Shamraiz Hussain Talib is currently a PhD candidate at the Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering, Tsinghua University, under the supervision of Prof. Jun Li. He received his M. Phil degree (majored in chemistry) from the Department of Chemistry, Mohi-Ud-Din Islamic University, AJ&K, Pakistan in 2016. His PhD research focuses on the theoretical investigations on heterogeneous single-atom catalysts.

Xiaohu Yu received his PhD degree from the Institute of Coal Chemistry, Chinese Academy of Sciences in 2013. He did postdoctoral research at Moscow Institute of Physics and Technology from 2013 to 2015. He worked as a visiting scholar in Prof. Jun Li’s group at Tsinghua University from 2019 to 2020. He is now an associative professor at Shaanxi University of Technology. His research interests focus on theoretical inorganic chemistry and computational cataysis science.

Jun Li received his PhD degree from Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences in 1992. He did postdoctoral research at the University of Siegen and Ohio State University from 1994 to 1997. He worked as a research scientist at Ohio State University and senior research scientist at the Pacific Northwest National Laboratory from 1997 to 2009. He is now a full professor at Tsinghua University. His research involves theoretical chemistry, heavy-element chemistry, and computational catalysis science.

Supplementary information

40843_2020_1399_MOESM1_ESM.pdf

Non-noble metal single-atom catalysts with phosphotungstic acid (PTA) support: A theoretical study of ethylene epoxidation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talib, S.H., Yu, X., Yu, Q. et al. Non-noble metal single-atom catalysts with phosphotungstic acid (PTA) support: A theoretical study of ethylene epoxidation. Sci. China Mater. 63, 1003–1014 (2020). https://doi.org/10.1007/s40843-020-1399-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-020-1399-y

Keywords

Navigation