Novel superhard boron-rich nitrides under pressure



富硼化合物通常为潜在的超硬材料, 尽管之前的研究提出了 不同晶型的BN超硬材料, 但尚未发现超硬的富硼氮化物. 本文采用 基于粒子群优化算法的结构预测方法, 结合第一性原理计算, 对富 硼氮化物在压力下的稳定成分及结构进行系统研究. 结果表明, 在 B4 N、B6 N和B8 N中, 硼原子都能够形成B 12 二十面体. 在0–20 GPa压 力范围内, B6 N是热力学稳定的, 而B4 N和B8 N是亚稳的. 电子性质 计算表明, 预测的Cmca B6 N和Immm B6 N为半导体, 其他均为金属. 声子和弹性常数计算表明, 所有预测结构都具有动力学稳定性和 机械稳定性. 值得关注的是, B4 N和B6 N的维氏硬度分别为45和 42 GPa, 表明其为潜在的超硬材料. 此研究丰富了B-N体系相图, 并 为实验上探索超硬材料提供了丰富的理论指导.


  1. 1

    Thévenot F. Boron carbide—A comprehensive review. J Eur Ceramic Soc, 1990, 6: 205–225

    Google Scholar 

  2. 2

    Albert B, Hillebrecht H. Boron: Elementary challenge for experimenters and theoreticians. Angew Chem Int Ed, 2009, 48: 8640–8668

    CAS  Google Scholar 

  3. 3

    Pan Y, Zhou B. ZrB2: Adjusting the phase structure to improve the brittle fracture and electronic properties. Ceram Int, 2017, 43: 8763–8768

    CAS  Google Scholar 

  4. 4

    Pan Y, Lin Y. Influence of B concentration on the structural stability and mechanical properties of Nb-B compounds. J Phys Chem C, 2015, 119: 23175–23183

    CAS  Google Scholar 

  5. 5

    Gao F, Hou L, He Y. Origin of superhardness in icosahedral B12 materials. J Phys Chem B, 2004, 108: 13069–13073

    CAS  Google Scholar 

  6. 6

    Guo X, He J, Liu Z, et al. Bond ionicities and hardness of B13C2-like structured B X crystals (X=C, N, O, P, As). Phys Rev B, 2006, 73: 104115

    Google Scholar 

  7. 7

    Veprek S, Zhang RF, Argon AS. Mechanical properties and hardness ofboron and boron-rich solids. J Superhard Mater, 2011, 33: 409–420

    Google Scholar 

  8. 8

    Will G, Kossobutzki KH. An X-ray structure analysis of boron carbide, B13C2, J Less Common Met, 1976, 44: 87–97

    CAS  Google Scholar 

  9. 9

    Morosin B, Aselage T, Emin D. On the crystal structure of boron carbides. AIP Conf Proc, 1991, 231: 193–196

    CAS  Google Scholar 

  10. 10

    An Q, Goddard WA. Atomistic origin of brittle failure of boron carbide from large-scale reactive dynamics simulations: Suggestions toward improved ductility. Phys Rev Lett, 2015, 115: 105501

    Google Scholar 

  11. 11

    Olofsson M, Lundström T. Synthesis and structure of non-stoichiometric B6O. J Alloys Compd, 1997, 257: 91–95

    CAS  Google Scholar 

  12. 12

    Peret JL. Preparation and properties of the boron phosphides. J Am Ceramic Soc, 1964, 47: 44–46

    CAS  Google Scholar 

  13. 13

    Yang P, Aselage TL. Synthesis and cell refinement for icosahedral boron phosphide B12P2. Powder Diffr, 1995, 10: 263–265

    CAS  Google Scholar 

  14. 14

    Morrison I, Bylander DM, Kleinman L. Bands and bonds of B12As2. Phys Rev B, 1992, 45: 1533–1537

    CAS  Google Scholar 

  15. 15

    Bakalova S, Gong Y, Cobet C, et al. Electronic excitations in B12As2 and their temperature dependence by vacuum ultraviolet ellipsometry. J Phys-Condens Matter, 2010, 22: 395801

    CAS  Google Scholar 

  16. 16

    Condon JB, Holcombe CE, Johnson DH, et al. The kinetics of the boron plus nitrogen reaction. Inorg Chem, 1976, 15: 2173–2179

    CAS  Google Scholar 

  17. 17

    Hubert H, Garvie LAJ, Buseck PR, et al. High-pressure, high-temperature syntheses in the B-C-N-O system. J Solid State Chem, 1997, 133: 356–364

    CAS  Google Scholar 

  18. 18

    Solozhenko VL, Le Godec Y, Kurakevych OO. Solid-state synthesis of boron subnitride, B6N: myth or reality? Comptes Rendus Chimie, 2006, 9: 1472–1475

    CAS  Google Scholar 

  19. 19

    Saitoh H, Yoshida K, Yarbrough WA. Crystal structure of new composition boron-rich boron nitride using raman spectroscopy. J Mater Res, 1993, 8: 8–11

    CAS  Google Scholar 

  20. 20

    Kurakevych OO, Solozhenko VL. Rhombohedral boron subnitride, B13N2, by X-ray powder diffraction. Acta Crystlogr C Cryst Struct Commun, 2007, 63: i80–i82

    CAS  Google Scholar 

  21. 21

    Solozhenko VL, Kurakevych OO. New boron subnitride B13N2: HP-HT synthesis, structure and equation of state. J Phys-Conf Ser, 2008, 121: 062001

    Google Scholar 

  22. 22

    Solozhenko VL, Bushlya V. Mechanical properties of superhard boron subnitride B13N2. J Superhard Mater, 2017, 39: 422–426

    Google Scholar 

  23. 23

    Solozhenko VL, Turkevich VZ. Phase diagram of the B-BN system at pressures up to 24 GPa: Experimental study and thermodynamic analysis. J Phys Chem C, 2018, 122: 8505–8509

    CAS  Google Scholar 

  24. 24

    Zhang H, Yao S, Widom M. Predicted phase diagram of boron-carbon-nitrogen. Phys Rev B, 2016, 93: 144107

    Google Scholar 

  25. 25

    Ektarawong A, Simak SI, Alling B. Thermodynamic stability and properties of boron subnitrides from first principles. Phys Rev B, 2017, 95: 064206

    Google Scholar 

  26. 26

    Ploog K, Schmidt H, Amberger E, et al. B48B2C2 und B48B2N2, zwei nichtmetallboride mit der struktur des sog. I tetragonalen bors. J Less Common Met, 1972, 29: 161–169

    CAS  Google Scholar 

  27. 27

    Will G, Kossobutzki KH. X-ray diffraction analysis of B50C2 and B50N2 crystal-lizing in the “tetragonal” boron lattice. J Less Common Met, 1976, 47: 33–38

    CAS  Google Scholar 

  28. 28

    Solozhenko VL, Kurakevych OO. Chemical interaction in the B-BN system at high pressures and temperatures. J Solid State Chem, 2009, 182: 1359–1364

    CAS  Google Scholar 

  29. 29

    Cherednichenko KA, Solozhenko VL. Structure and equation of state of tetragonal boron subnitride B50N2. J Appl Phys, 2017, 122: 155901

    Google Scholar 

  30. 30

    Wang Y, Lv J, Zhu L, et al. Crystal structure prediction via particle-swarm optimization. Phys Rev B, 2010, 82: 094116

    Google Scholar 

  31. 31

    Lv J, Wang Y, Zhu L, et al. Predicted novel high-pressure phases of lithium. Phys Rev Lett, 2011, 106: 015503

    Google Scholar 

  32. 32

    Zhu L, Wang H, Wang Y, et al. Substitutional alloy of Bi and Te at high pressure. Phys Rev Lett, 2011, 106: 145501

    Google Scholar 

  33. 33

    Wang Y, Lv J, Zhu L, et al. CALYPSO: A method for crystal structure prediction. Comput Phys Commun, 2012, 183: 2063–2070

    CAS  Google Scholar 

  34. 34

    Liang X, Bergara A, Wang L, et al. Potential high-Tc superconductivity in CaYH12 under pressure. Phys Rev B, 2019, 99: 100505

    CAS  Google Scholar 

  35. 35

    Wang L, Tian F, Liang X, et al. High-pressure phases of boron arsenide with potential high thermal conductivity. Phys Rev B, 2019, 99: 174104

    CAS  Google Scholar 

  36. 36

    Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 1996, 54: 11169–11186

    CAS  Google Scholar 

  37. 37

    Perdew JP, Chevary JA, Vosko SH, et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B, 1992, 46: 6671–6687

    CAS  Google Scholar 

  38. 38

    Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B, 1999, 59: 1758–1775

    CAS  Google Scholar 

  39. 39

    Liang X, Bergara A, Xie Y, et al. Prediction of superconductivity in pressure-induced new silicon boride phases. Phys Rev B, 2020, 101: 014112

    CAS  Google Scholar 

  40. 40

    Vojteer N, Schroeder M, Röhr C, et al. Li2B12Si2: The first ternary compound in the system Li/B/Si: Synthesis, crystal structure, hardness, spectroscopic investigations, and electronic structure. Chem Eur J, 2008, 14: 7331–7342

    CAS  Google Scholar 

  41. 41

    Li Y, Hao J, Liu H, et al. High-energy density and superhard nitrogen-rich B-N compounds. Phys Rev Lett, 2015, 115: 105502

    Google Scholar 

  42. 42

    Togo A, Oba F, Tanaka I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys Rev B, 2008, 78: 134106

    Google Scholar 

  43. 43

    Giannozzi P, Baroni S, Bonini N, et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys-Condens Matter, 2009, 21: 395502

    Google Scholar 

  44. 44

    Gao F, He J, Wu E, et al. Hardness of covalent crystals. Phys Rev Lett, 2003, 91: 015502

    Google Scholar 

  45. 45

    Tian Y, Xu B, Zhao Z. Microscopic theory of hardness and design of novel superhard crystals. Int J Refractory Met Hard Mater, 2012, 33: 93–106

    CAS  Google Scholar 

  46. 46

    Xu B, Tian Y. Superhard materials: recent research progress and prospects. Sci China Mater, 2015, 58: 132–142

    CAS  Google Scholar 

  47. 47

    Hu W, Wen B, Huang Q, et al. Role of plastic deformation in tailoring ultrafine microstructure in nanotwinned diamond for enhanced hardness. Sci China Mater, 2017, 60: 178–185

    CAS  Google Scholar 

  48. 48

    Chen XQ, Niu H, Li D, et al. Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics, 2011, 19: 1275–1281

    CAS  Google Scholar 

Download references


This work was supported by the Fostering Program of Major Research Plan of the National Natural Science Foundation of China (91963115), the National Key R&D Program of China (2018YFA0703400), the National Natural Science Foundation of China (51732010), and the PhD Foundation by Yanshan University (B970). Bergara A acknowledges financial support from the Spanish Ministry of Economy and Competitiveness (FIS2016-76617-P) and the Department of Education, Universities and Research of the Basque Government and the University of the Basque Country (IT756-13).

Author information




Gao G conceived the project and wrote the paper. Wang L, Sun R, Liu W, Liang X and Yuan Z performed the calculations. All the authors analyzed the data, discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Guoying Gao 高国英.

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary information

Experimental details and supporting data are available in the online version of the paper.

Linyan Wang is a PhD candidate at the College of Materials Science and Engineering, Yanshan University. Her research interest focuses on theoretical design and experimental synthesis of novel metastable materials under high pressure and high temperature.

Guoying Gao is a professor at the College of Materials Science and Engineering, Yanshan University. She received her PhD degree from Jilin University in 2011. Her research interest focuses on theoretical design and experimental synthesis of novel metastable materials under high pressure and high temperature.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Sun, R., Liu, W. et al. Novel superhard boron-rich nitrides under pressure. Sci. China Mater. 63, 2358–2364 (2020).

Download citation