Skip to main content
Log in

Organic halogen-bonded co-crystals for optoelectronic applications

有机卤素键晶体及其在光电子学中的应用

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Organic halogen-bonded co-crystals assembled from two or more components via halogen bonds, have attracted significant attention due to their unpredictable and outstanding chemical and physical properties, which make them potential candidate materials for organic optoelectronic applications. This paper briefly summarizes the recent progress in terms of the developed fabrication methods for organic halogen-bonded co-crystals and their multifunctional optoelectronic applications. Based on the current research on organic halogen-bonded co-crystals, we further discuss the achievements as well as the existing challenges. Finally, we provide our outlooks for further studies and applications of organic halogen-bonded co-crystals.

摘要

有机卤素共晶是由两个或者更多不同组分通过碳卤键构成的. 因其多样化的化学物理特性, 及在有机光电子学领域的潜在应用价值, 有机卤素共晶引起了研究者的广泛关注. 本综述文章中, 我们简单总结了有机卤键共晶的制备方法和在光电子器件领域应用的最新进展. 此外, 我们还讨论了目前有机卤键共晶的研究方向及面临的技术挑战, 同时对有机卤键共晶的进一步研究和应用前景进行了展望.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Park SK, Kim JH, Ohto T, et al. Highly luminescent 2D-type slab crystals based on a molecular charge-transfer complex as promising organic light-emitting transistor materials. Adv Mater, 2017, 29: 1701346

    Google Scholar 

  2. Briseno AL, Mannsfeld SCB, Ling MM, et al. Patterning organic single-crystal transistor arrays. Nature, 2006, 444: 913–917

    CAS  Google Scholar 

  3. Zhang J, Jin J, Xu H, et al. Recent progress on organic donor-acceptor complexes as active elements in organic field-effect transistors. J Mater Chem C, 2018, 6: 3485–3498

    CAS  Google Scholar 

  4. Sundar VC, Zaumseil J, Podzorov V, et al. Elastomeric transistor stamps: reversible probing of charge transport in organic crystals. Science, 2004, 303: 1644–1646

    CAS  Google Scholar 

  5. Park KS, Cho B, Baek J, et al. Single-crystal organic nanowire electronics by direct printing from molecular solutions. Adv Funct Mater, 2013, 23: 4776–4784

    CAS  Google Scholar 

  6. Pan C, Dong L, Zhu G, et al. High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array. Nat Photon, 2013, 7: 752–758

    CAS  Google Scholar 

  7. Usman R, Khan A, Wang M, et al. Investigation of chargetransfer interaction in mixed stack donor-acceptor cocrystals toward tunable solid-state emission characteristics. Cryst Growth Des, 2018, 18: 6001–6008

    CAS  Google Scholar 

  8. Wang X, Liao Q, Kong Q, et al. Whispering-gallery-mode microlaser based on self-assembled organic single-crystalline hexagonal microdisks. Angew Chem Int Ed, 2014, 53: 5863–5867

    CAS  Google Scholar 

  9. Wang X, Li ZZ, Zhuo MP, et al. Tunable near-infrared organic nanowire nanolasers. Adv Funct Mater, 2017, 27: 1703470

    Google Scholar 

  10. Zhang C, Zou CL, Yan Y, et al. Two-photon pumped lasing in single-crystal organic nanowire exciton polariton resonators. J Am Chem Soc, 2011, 133: 7276–7279

    CAS  Google Scholar 

  11. Mizuno H, Haku U, Marutani Y, et al. Single crystals of 5,5′-bis (4′-methoxybiphenyl-4-yl)-2,2′-bithiophene for organic laser media. Adv Mater, 2012, 24: 5744–5749

    CAS  Google Scholar 

  12. Guo ZH, Lei T, Jin ZX, et al. T-shaped donor-acceptor molecules for low-loss red-emission optical waveguide. Org Lett, 2013, 15: 3530–3533

    CAS  Google Scholar 

  13. Chen PZ, Zhang H, Niu LY, et al. A solid-state fluorescent material based on carbazole-containing difluoroboron β-diketonate: multiple chromisms, the self-assembly behavior, and optical waveguides. Adv Funct Mater, 2017, 27: 1700332

    Google Scholar 

  14. Li Z, Kim MH, Wang C, et al. Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces. Nat Nanotech, 2017, 12: 675–683

    CAS  Google Scholar 

  15. Feng L, Xu YL, Fegadolli WS, et al. Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. Nat Mater, 2013, 12: 108–113

    CAS  Google Scholar 

  16. Fang X, Yang X, Yan D. Vapor-phase π-π molecular recognition: a fast and solvent-free strategy towards the formation of co-crystalline hollow microtube with 1D optical waveguide and up-conversion emission. J Mater Chem C, 2017, 5: 1632–1637

    CAS  Google Scholar 

  17. Li J, Zhou K, Liu J, et al. Aromatic extension at 2,6-positions of anthracene toward an elegant strategy for organic semiconductors with efficient charge transport and strong solid state emission. J Am Chem Soc, 2017, 139: 17261–17264

    CAS  Google Scholar 

  18. Capelli R, Toffanin S, Generali G, et al. Organic light-emitting transistors with an efficiency that outperforms the equivalent light-emitting diodes. Nat Mater, 2010, 9: 496–503

    CAS  Google Scholar 

  19. Dinelli F, Capelli R, Loi M, et al. High-mobility ambipolar transport in organic light-emitting transistors. Adv Mater, 2006, 18: 1416–1420

    CAS  Google Scholar 

  20. McCarthy MA, Liu B, Donoghue EP, et al. Low-voltage, low-power, organic light-emitting transistors for active matrix displays. Science, 2011, 332: 570–573

    CAS  Google Scholar 

  21. Hu Y, Ma X, Zhang Y, et al. Detection of amines with fluorescent nanotubes: applications in the assessment of meat spoilage. ACS Sens, 2016, 1: 22–25

    CAS  Google Scholar 

  22. Stockman MI. Nanoplasmonic sensing and detection. Science, 2015, 348: 287–288

    CAS  Google Scholar 

  23. McNeil SK, Kelley SP, Beg C, et al. Cocrystals of 10-methyl-phenthiazine and 1,3-dinitrobenzene: implications for the optical sensing of TNT-based explosives. ACS Appl Mater Interfaces, 2013, 5: 7647–7653

    CAS  Google Scholar 

  24. Schneider HJ. Binding mechanisms in supramolecular complexes. Angew Chem Int Ed, 2009, 48: 3924–3977

    CAS  Google Scholar 

  25. Zhang J, Gu P, Long G, et al. Switching charge-transfer characteristics from p-type to n-type through molecular “doping” (co-crystallization). Chem Sci, 2016, 7: 3851–3856

    CAS  Google Scholar 

  26. Desiraju GR. Crystal engineering: from molecule to crystal. J Am Chem Soc, 2013, 135: 9952–9967

    CAS  Google Scholar 

  27. Huang C, Li Y, Wang N, et al. Progress in research into 2D graphdiyne-based materials. Chem Rev, 2018, 118: 7744–7803

    CAS  Google Scholar 

  28. Li J, Jiu T, Duan C, et al. Improved electron transport in MAPbI3 perovskite solar cells based on dual doping graphdiyne. Nano Energy, 2018, 46: 331–337

    CAS  Google Scholar 

  29. Kuang C, Tang G, Jiu T, et al. Highly efficient electron transport obtained by doping PCBM with graphdiyne in planar-heterojunction perovskite solar cells. Nano Lett, 2015, 15: 2756–2762

    CAS  Google Scholar 

  30. Li J, Jiu T, Chen S, et al. Graphdiyne as a host active material for perovskite solar cell application. Nano Lett, 2018, 18: 6941–6947

    CAS  Google Scholar 

  31. Metrangolo P, Meyer F, Pilati T, et al. Halogen bonding in supramolecular chemistry. Angew Chem Int Ed, 2008, 47: 6114–6127

    CAS  Google Scholar 

  32. Messina MT, Metrangolo P, Panzeri W, et al. Intermolecular recognition between hydrocarbon oxygen-donors and per-fluorocarbon iodine-acceptors: the shortest O…I non-covalent bond. Tetrahedron, 2001, 57: 8543–8550

    CAS  Google Scholar 

  33. Gagnaux P, Susz BP. Etudes de composés d’addition des acides de LEWIS. XII. Structure, spectre infrarouge et polarisation moléculaire du composé d’addition dioxanne-1,4-diiodacétylène. Helvet Chim Acta, 1960, 43: 948–956

    CAS  Google Scholar 

  34. Fan E, Vicent C, Geib SJ, et al. Molecular recognition in the solid state: hydrogen-bonding control of molecular aggregation. Chem Mater, 1994, 6: 1113–1117

    CAS  Google Scholar 

  35. Metrangolo P, Resnati G. Halogen bonding: a paradigm in supramolecular chemistry. Chem Eur J, 2001, 7: 2511–2519

    CAS  Google Scholar 

  36. Desiraju GR, Ho PS, Kloo L, et al. Definition of the halogen bond (IUPAC Recommendations 2013). Pure Appl Chem, 2013, 85: 1711–1713

    CAS  Google Scholar 

  37. Gilday LC, Robinson SW, Barendt TA, et al. Halogen bonding in supramolecular chemistry. Chem Rev, 2015, 115: 7118–7195

    CAS  Google Scholar 

  38. Politzer P, Lane P, Concha MC, et al. An overview of halogen bonding. J Mol Model, 2007, 13: 305–311

    CAS  Google Scholar 

  39. Colin MM, Gaultier de Claubry H. Sur le combinaisons deL’iode avec les substances vegetales et animales. Ann Chim, 1814, 90: 87–100

    Google Scholar 

  40. Guthrie F. XXVIII.—On the iodide of iodammonium. J Chem Soc, 1863, 16: 239–244

    Google Scholar 

  41. Hassel O, Hvoslef J, Vihovde EH, et al. The structure of bromine 1,4-dioxanate.. Acta Chem Scand, 1954, 8: 873

    CAS  Google Scholar 

  42. Hassel O. Structural aspects of interatomic charge-transfer bonding. Science, 1970, 170: 497–502

    CAS  Google Scholar 

  43. Bent HA. Structural chemistry of donor-acceptor interactions. Chem Rev, 1968, 68: 587–648

    CAS  Google Scholar 

  44. Clark T, Hennemann M, Murray JS, et al. Halogen bonding: the σ-hole. J Mol Model, 2007, 13: 291–296

    CAS  Google Scholar 

  45. Lunghi A, Cardillo P, Messina T, et al. Perfluorocarbon—hydrocarbon self-assembling. Thermal and vibrational analyses of one-dimensional networks formed by α,ω)-diiodoperfluoroalkanes with K.2.2. and K.2.2.2.. J Fluorine Chem, 1998, 91: 191–194

    CAS  Google Scholar 

  46. Amico V, Meille SV, Corradi E, et al. Perfluorocarbon-hydrocarbon self-assembling. 1D infinite chain formation driven by nitrogen…iodine interactions. J Am Chem Soc, 1998, 120: 8261–8262

    CAS  Google Scholar 

  47. Farina A, Meille SV, Messina MT, et al. Resolution of racemic 1,2-dibromohexafluoropropane through halogen-bonded supramolecular helices. Angew Chem Int Ed, 1999, 38: 2433–2436

    CAS  Google Scholar 

  48. Metrangolo P, Resnati G. Halogen bonding: where we are and where we are going. Cryst Growth Des, 2012, 12: 5835–5838

    CAS  Google Scholar 

  49. Cavallo G, Metrangolo P, Milani R, et al. The halogen bond. Chem Rev, 2016, 116: 2478–2601

    CAS  Google Scholar 

  50. Metrangolo P, Neukirch H, Pilati T, et al. Halogen bonding based recognition processes: A world parallel to hydrogen bonding. Acc Chem Res, 2005, 38: 386–395

    CAS  Google Scholar 

  51. Corradi E, Meille SV, Messina MT, et al. Halogen bonding versus hydrogen bonding in driving self-assembly processes. Angew Chem Int Ed, 2000, 39: 1782–1786

    CAS  Google Scholar 

  52. Prasang C, Whitwood AC, Bruce DW. Halogen-bonded cocrystals of 4-(N,N-dimethylamino)pyridine with fluorinated iodobenzenes. Cryst Growth Des, 2009, 9: 5319–5326

    CAS  Google Scholar 

  53. Wang C, Danovich D, Mo Y, et al. On the nature of the halogen bond. J Chem Theor Comput, 2014, 10: 3726–3737

    CAS  Google Scholar 

  54. Wang W, Wong NB, Zheng W, et al. Theoretical study on the blueshifting halogen bond. J Phys Chem A, 2004, 108: 1799–1805

    CAS  Google Scholar 

  55. Remsing RC, Klein ML. Halogen bond structure and dynamics from molecular simulations. J Phys Chem B, 2019, 123: 6266–6273

    CAS  Google Scholar 

  56. Crihfield A, Hartwell J, Phelps D, et al. Crystal engineering through halogen bonding. 2. Complexes of diacetylene-linked heterocycles with organic iodides. Cryst Growth Des, 2003, 3: 313–320

    CAS  Google Scholar 

  57. Nguyen HL, Horton PN, Hursthouse MB, et al. Halogen bonding: A new interaction for liquid crystal formation. J Am Chem Soc, 2004, 126: 16–17

    CAS  Google Scholar 

  58. Gao HY, Shen QJ, Zhao XR, et al. Phosphorescent co-crystal assembled by 1,4-diiodotetrafluorobenzene with carbazole based on C-I…π halogen bonding. J Mater Chem, 2012, 22: 5336–5343

    CAS  Google Scholar 

  59. Huang Y, Wang Z, Chen Z, et al. Organic cocrystals: Beyond electrical conductivities and field-effect transistors (FETs). Angew Chem Int Ed, 2019, 58: 9696–9711

    CAS  Google Scholar 

  60. Cinčić D, Frisčić T, Jones W. Isostructural materials achieved by using structurally equivalent donors and acceptors in halogen-bonded cocrystals. Chem Eur J, 2008, 14: 747–753

    Google Scholar 

  61. Zhang P, Bolla G, Qiu G, et al. Halogen bonded cocrystal polymorphs of 1,4-di(4′-pyridyl)-1,3-diacetylene. CrystEngComm, 2017, 19: 4505–4509

    CAS  Google Scholar 

  62. Yan D, Delori A, Lloyd GO, et al. A cocrystal strategy to tune the luminescent properties of stilbene-type organic solid-state materials. Angew Chem, 2011, 123: 12691–12694

    Google Scholar 

  63. Weiss R, Schwab O, Hampel F. Ion-pair strain as the driving force for hypervalent adduct formation between iodide ions and substituted iodobenzenes: Structural alternatives to meisenheimer complexes. Chem Eur J, 1999, 5: 968–974

    CAS  Google Scholar 

  64. Wang H, Hu RX, Pang X, et al. The phosphorescent co-crystals of 1,4-diiodotetrafluorobenzene and bent 3-ring-N-heterocyclic hydrocarbons by C-I…N and C-I…π halogen bonds. CrystEngComm, 2014, 16: 7942–7948

    CAS  Google Scholar 

  65. Gao YJ, Li C, Liu R, et al. Phosphorescence of several cocrystals assembled by diiodotetrafluorobenzene and three ring angular diazaphenanthrenes via CIπ N halogen bond. Spectrochim Acta Part A-Mol Biomol Spectr, 2017, 173: 792–799

    CAS  Google Scholar 

  66. Xu J, Liu X, Lin T, et al. Synthesis and self-assembly of difunctional halogen-bonding molecules: A new family of supramolecular liquid-crystalline polymers. Macromolecules, 2005, 38: 3554–3557

    CAS  Google Scholar 

  67. Lei YL, Liao LS, Lee ST. Selective growth of dual-color-emitting heterogeneous microdumbbells composed of organic chargetransfer complexes. J Am Chem Soc, 2013, 135: 3744–3747

    CAS  Google Scholar 

  68. Bolton O, Lee K, Kim HJ, et al. Activating efficient phosphorescence from purely organic materials by crystal design. Nat Chem, 2011, 3: 205–210

    CAS  Google Scholar 

  69. Yan D, Delori A, Lloyd GO, et al. A cocrystal strategy to tune the luminescent properties of stilbene-type organic solid-state materials. Angew Chem Int Ed, 2011, 50: 12483–12486

    CAS  Google Scholar 

  70. Wu JJ, Li ZZ, Zhuo MP, et al. Tunable emission color and morphology of organic microcrystals by a “cocrystal” approach. Adv Opt Mater, 2018, 6: 1701300

    Google Scholar 

  71. Friscic T, Jones W. Recent advances in understanding the mechanism of cocrystal formation via grinding. Cryst Growth Des, 2009, 9: 1621–1637

    CAS  Google Scholar 

  72. Wang Y, Zhu W, Dong H, et al. Organic cocrystals: new strategy for molecular collaborative innovation. Top Curr Chem (Z), 2016, 374: 83

    Google Scholar 

  73. Zhang J, Liu G, Zhou Y, et al. Solvent accommodation: Functionalities can be tailored through co-crystallization based on 1:1 coronene-F4TCNQ charge-transfer complex. ACS Appl Mater Interfaces, 2017, 9: 1183–1188

    CAS  Google Scholar 

  74. Liao Q, Fu H, Yao J. Waveguide modulator by energy remote relay from binary organic crystalline microtubes. Adv Mater, 2009, 21: 4153–4157

    CAS  Google Scholar 

  75. Zhuo MP, Tao YC, Wang XD, et al. Rational synthesis of organic single-crystalline microrods and microtubes for efficient optical waveguides. J Mater Chem C, 2018, 6: 9594–9598

    CAS  Google Scholar 

  76. Cincic D, Friscic T, Jones W. A Stepwise mechanism for the mechanochemical synthesis of halogen-bonded cocrystal architectures. J Am Chem Soc, 2008, 130: 7524–7525

    CAS  Google Scholar 

  77. d’Agostino S, Grepioni F, Braga D, et al. Tipping the balance with the aid of stoichiometry: room temperature phosphorescence versus fluorescence in organic cocrystals. Cryst Growth Des, 2015, 15: 2039–2045

    Google Scholar 

  78. Braga D, Maini L, Grepioni F. Mechanochemical preparation of co-crystals. Chem Soc Rev, 2013, 42: 7638–7648

    CAS  Google Scholar 

  79. Wang X, Zhou Y, Lei T, et al. Structural-property relationship in pyrazino[2,3-g]quinoxaline derivatives: morphology, photophysical, and waveguide properties. Chem Mater, 2010, 22: 3735–3745

    CAS  Google Scholar 

  80. Friščić T, Trask AV, Jones W, et al. Screening for inclusion compounds and systematic construction of three-component solids by liquid-assisted grinding. Angew Chem Int Ed, 2006, 45: 7546–7550

    Google Scholar 

  81. Lei YL, Jin Y, Zhou DY, et al. White-light emitting microtubes of mixed organic charge-transfer complexes. Adv Mater, 2012, 24: 5345–5351

    CAS  Google Scholar 

  82. Chandrasekhar N, Mohiddon MA, Chandrasekar R. Organic submicro tubular optical waveguides: self-assembly, diverse geometries, efficiency, and remote sensing properties. Adv Opt Mater, 2013, 1: 305–311

    Google Scholar 

  83. Liu H, Lu Z, Zhang Z, et al. Highly elastic organic crystals for flexible optical waveguides. Angew Chem Int Ed, 2018, 57: 8448–8452

    CAS  Google Scholar 

  84. Zhang C, Zhao YS, Yao J. Optical waveguides at micro/nanoscale based on functional small organic molecules. Phys Chem Chem Phys, 2011, 13: 9060–9073

    CAS  Google Scholar 

  85. Zhao Y, Xu J, Peng A, et al. Optical waveguide based on crystalline organic microtubes and microrods. Angew Chem Int Ed, 2008, 47: 7301–7305

    CAS  Google Scholar 

  86. Dong R, Pfeffermann M, Liang H, et al. Large-area, free-standing, two-dimensional supramolecular polymer single-layer sheets for highly efficient electrocatalytic hydrogen evolution. Angew Chem Int Ed, 2015, 54: 12058–12063

    CAS  Google Scholar 

  87. Zhang Z, Song X, Wang S, et al. Two-dimensional organic single crystals with scale regulated, phase-switchable, polymorphismdependent, and amplified spontaneous emission properties. J Phys Chem Lett, 2016, 7: 1697–1702

    CAS  Google Scholar 

  88. Heng L, Wang X, Tian D, et al. Optical waveguides based on single-crystalline organic micro-tiles. Adv Mater, 2010, 22: 4716–4720

    CAS  Google Scholar 

  89. Chandrasekhar N, Chandrasekar R. Reversibly shape-shifting organic optical waveguides: formation of organic nanorings, nanotubes, and nanosheets. Angew Chem Int Ed, 2012, 51: 3556–3561

    CAS  Google Scholar 

  90. Zhuo MP, Tao YC, Wang XD, et al. 2D organic photonics: an asymmetric optical waveguide in self-assembled halogen-bonded cocrystals. Angew Chem, 2018, 130: 11470–11474

    Google Scholar 

  91. Zhao YS, Peng A, Fu H, et al. Nanowire waveguides and ultraviolet lasers based on small organic molecules. Adv Mater, 2008, 20: 1661–1665

    CAS  Google Scholar 

  92. Xu Z, Liao Q, Shi Q, et al. Low-threshold nanolasers based on slab-nanocrystals of H-aggregated organic semiconductors. Adv Mater, 2012, 24: OP216–OP220

    CAS  Google Scholar 

  93. Zhang W, Yao J, Zhao YS. Organic micro/nanoscale lasers. Acc Chem Res, 2016, 49: 1691–1700

    CAS  Google Scholar 

  94. Huang MH, Mao S, Feick H, et al. Room-temperature ultraviolet nanowire nanolasers. Science, 2001, 292: 1897–1899

    CAS  Google Scholar 

  95. Wang X, Li H, Wu Y, et al. Tunable morphology of the self-assembled organic microcrystals for the efficient laser optical resonator by molecular modulation. J Am Chem Soc, 2014, 136: 16602–16608

    CAS  Google Scholar 

  96. Hill MT, Gather MC. Advances in small lasers. Nat Photon, 2014, 8: 908–918

    CAS  Google Scholar 

  97. Wang X, Li ZZ, Li SF, et al. Near-infrared organic single-crystal lasers with polymorphism-dependent excited state intramolecular proton transfer. Adv Opt Mater, 2017, 5: 1700027

    Google Scholar 

  98. Chu M, Qiu B, Zhang W, et al. Tailoring the energy levels and cavity structures toward organic cocrystal microlasers. ACS Appl Mater Interfaces, 2018, 10: 42740–42746

    CAS  Google Scholar 

  99. Yu Y, Li ZZ, Wu JJ, et al. Transformation from nonlasing to lasing in organic solid-state through the cocrystal engineering. ACS Photonics, 2019, 6: 1798–1803

    CAS  Google Scholar 

  100. Rao SM, Batra AK, Lal RB, et al. Mixed methyl-(2,4-dinitrophenyl)-aminopropanoate: 2-methyl-4-nitroaniline crystal-a new nonlinear optical material. J Appl Phys, 1991, 70: 6674–6678

    CAS  Google Scholar 

  101. Yang Z, Mutter L, Stillhart M, et al. Large-size bulk and thin-film stilbazolium-salt single crystals for nonlinear optics and THz generation. Adv Funct Mater, 2007, 17: 2018–2023

    CAS  Google Scholar 

  102. Bosshard C, Wong MS, Pan F, et al. Self-assembly of an acentric co-crystal of a highly hyperpolarizable merocyanine dye with optimized alignment for nonlinear optics. Adv Mater, 1997, 9: 554–557

    Google Scholar 

  103. Wuest JD. Co-crystals give light a tune-up. Nat Chem, 2012, 4: 74–75

    CAS  Google Scholar 

  104. Goetz KP, Vermeulen D, Payne ME, et al. Charge-transfer complexes: new perspectives on an old class of compounds. J Mater Chem C, 2014, 2: 3065–3076

    CAS  Google Scholar 

  105. Zhu W, Zhu L, Sun L, et al. Uncovering the intramolecular emission and tuning the nonlinear optical properties of organic materials by cocrystallization. Angew Chem Int Ed, 2016, 55: 14023–14027

    CAS  Google Scholar 

  106. Andreasson J, Pischel U, Straight SD, et al. All-photonic multifunctional molecular logic device. J Am Chem Soc, 2011, 133: 11641–11648

    CAS  Google Scholar 

  107. Fu Y, Hu X, Lu C, et al. All-optical logic gates based on nanoscale plasmonic slot waveguides. Nano Lett, 2012, 12: 5784–5790

    CAS  Google Scholar 

  108. Montenegro JM, Perez-Inestrosa E, Collado D, et al. A natural-product-inspired photonic logic gate based on photoinduced electron-transfer-generated dual-channel fluorescence. Org Lett, 2004, 6: 2353–2355

    CAS  Google Scholar 

  109. Li Y, Zheng H, Li Y, et al. Photonic logic gates based on control of FRET by a solvatochromic perylene bisimide. J Org Chem, 2007, 72: 2878–2885

    CAS  Google Scholar 

  110. Lucassen ACB, Karton A, Leitus G, et al. Co-crystallization of sym-triiodo-trifluorobenzene with bipyridyl donors: Consistent formation of two instead of anticipated three N…I halogen bonds. Cryst Growth Des, 2007, 7: 386–392

    CAS  Google Scholar 

  111. Walsh RB, Padgett CW, Metrangolo P, et al. Crystal engineering through halogen bonding: Complexes of nitrogen heterocycles with organic iodides. Cryst Growth Des, 2001, 1: 165–175

    CAS  Google Scholar 

  112. Zhu W, Zheng R, Zhen Y, et al. Rational design of charge-transfer interactions in halogen-bonded co-crystals toward versatile solidstate optoelectronics. J Am Chem Soc, 2015, 137: 11038–11046

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21703148, 21971185, 21403130, 21403129, 21576158, and 21576159), the Natural Science Foundation of Jiangsu Province (BK20170330), the Natural Science Foundation of Shandong Province (ZR2014BQ028 and 2015ZRB01765), the Collaborative Innovation Center of Suzhou Nano Science and Technology (CIC-Nano), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the “111” Project of The State Administration of Foreign Experts Affairs of China.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Chen S prepared the figures and wrote the paper. Yin HL and Wu JJ revised the figures. Wang XD proposed and guided the project. Wang XD and Lin HT revised the manuscript. All authors joined the discussion and gave useful suggestions.

Corresponding authors

Correspondence to Hongtao Lin  (蔺红桃) or Xue-Dong Wang  (王雪东).

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Shuhai Chen received his PhD degree from the Institute of Coal Chemistry, Chinese Academy of Sciences in 2012. In 2015, he joined the School of Chemical Engineering, Qingdao University of Science and Technology, as a postdoctor. His research interests are in molecular materials, polymer materials, and optoelectronic devices.

Hongtao Lin is an associate professor in the School of Chemistry and Chemical Engineering, Shandong University of Technology. She received her PhD degree from the Institute of Chemistry, Chinese Academy of Sciences, in 2013 after she got her MSc degree (2010) in Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences. Her research work includes the design and synthesis of novel organic semiconductors, and fabrication and characterization of organic optoelectronic devices.

Xue-Dong Wang is an associate professor at the Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University. He received his Bachelor’s degree in chemistry from Lanzhou University in 2011 and his PhD in physical chemistry from the Institute of Chemistry, Chinese Academy of Sciences in 2016. His research focuses on the fine synthesis of organic micro/ nanocrystals and the organic photonics, including organic solid-state lasers and optical waveguides.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Yin, H., Wu, JJ. et al. Organic halogen-bonded co-crystals for optoelectronic applications. Sci. China Mater. 63, 1613–1630 (2020). https://doi.org/10.1007/s40843-020-1386-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-020-1386-7

Keywords

Navigation