Skip to main content
Log in

Deep-ultraviolet nonlinear optical crystals by design: A computer-aided modeling blueprint from first principles

深紫外非线性光学晶体设计: 基于第一性原理的计算机辅助设计蓝图

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Deep-ultraviolet (DUV) nonlinear optical (NLO) crystal is indispensable in current DUV all-solid-state laser technology, which is the key device to generate DUV light by frequency conversion. Due to stringent criteria, DUV NLO crystals are scarce and their discovery faces a big challenge. Although KBe2BO3F2 (KBBF) is already excellent for current uses, the development of DUV science requires the materials with shorter output wavelengths and larger NLO effects, so as to meet the needs of DUV lasers with higher precision and higher power. Therefore, how to efficiently design DUV NLO materials has always been the core issue in NLO materials science. Looking back on the development of NLO materials, it turns out that theoretical modeling and simulation is an effective and efficient method, not only for mechanism understandings, but also for experimental exploration. In this article, in order to accelerate the process of DUV materials discovery, we summarize and propose a powerful computeraided modeling system and design blueprint that can be used to evaluate the DUV NLO performance in a faster way than pure experiments. With this in hand, we enrich the understanding of NLO structure-property correlation, and systematically prospect the DUV NLO properties on the basis of many existing and designed structures according to different structural types and chemical compositions. Seven novel structures are predicted for the first time to exhibit potential DUV NLO capabilities. All the results enable us to believe that the computer-aided modeling blueprint will play an important role in the exploration of new DUV NLO crystals.

摘要

深紫外非线性光学晶体在当前深紫外全固态激光技术中是不可或缺的, 它是通过频率转换产生深紫外相干光的核心元件. 由于严苛的性能标准, 深紫外非线性光学晶体非常稀少, 其新型材料的发现面临巨大挑战. 尽管KBe2BO3F2(KBBF)晶体对于许多当前的用途已经非常出色, 但是深紫外科学的发展需要深紫外非线性光学晶体具有更短的输出波长和更大的倍频效应, 以满足更高精度和更高功率的深紫外激光需求. 因此, 如何有效地设计深紫外非线性光学晶体一直是非线性材料科学领域的一个核心问题. 回顾非线性材料的发展, 理论设计和模拟对非线性光学机理的理解和非线性材料的探索都是一种有效且高效的方案. 为了进一步加速深紫外非线性材料的探索进程, 在本文中, 我们总结并提出了一套功能全面的计算机辅助建模系统和设计蓝图, 该系统可用于高效且严格地评估候选材料的深紫外非线性光学性能. 依靠此建模系统, 我们不仅可以丰富对非线性光学结构与性能关系的理解, 而且能够从许多已知的和设计的结构出发, 根据不同的结构类型和化学组分, 系统研究其深紫外非线性光学的具体特性. 基于此设计蓝图, 我们总结了二十多种可能的深紫外非线性光学晶体结构, 并首次预言了能够呈现出潜在的深紫外非线性光学性能的七种新颖结构. 我们相信, 这套计算机辅助建模系统和设计蓝图将会在探索新型深紫外非线性光学材料的进程中发挥重要作用.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kiss T, Kanetaka F, Yokoya T, et al. Photoemission spectroscopic evidence of gap anisotropy in an f-electron superconductor. Phys Rev Lett, 2005, 94: 057001

    CAS  Google Scholar 

  2. Savage N. Ultraviolet lasers. Nat Photon, 2007, 2007: 83–85

    Google Scholar 

  3. Kanai T, Wang X, Adachi S, et al. Watt-level tunable deep ultraviolet light source by a KBBF prism-coupled device. Opt Express, 2009, 17: 8696–8703

    CAS  Google Scholar 

  4. Petrov V. Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals. Prog Quantum Electron, 2015, 42: 1–106

    Google Scholar 

  5. Boyd RW, Nonlinear Optics. 3rd Edition. San Diego: Academic Press, 2008

    Google Scholar 

  6. Li M, Pan H, Tong Y, et al. All-optical ultrafast polarization switching of terahertz radiation by impulsive molecular alignment. Opt Lett, 2011, 36: 3633–3635

    CAS  Google Scholar 

  7. Yin X, Ye Z, Chenet DA, et al. Edge nonlinear optics on a MoS2 atomic monolayer. Science, 2014, 344: 488–490

    CAS  Google Scholar 

  8. Alam MZ, De Leon I, Boyd RW. Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region. Science, 2016, 352: 795–797

    CAS  Google Scholar 

  9. Wu L, Patankar S, Morimoto T, et al. Giant anisotropic nonlinear optical response in transition metal monopnictide Weyl semimetals. Nat Phys, 2017, 13: 350–355

    CAS  Google Scholar 

  10. Gallagher SM, Albrecht AW, Hybl JD, et al. Heterodyne detection of the complete electric field of femtosecond four-wave mixing signals. J Opt Soc Am B, 1998, 15: 2338

    CAS  Google Scholar 

  11. Sekikawa T, Kosuge A, Kanai T, et al. Nonlinear optics in the extreme ultraviolet. Nature, 2004, 432: 605–608

    CAS  Google Scholar 

  12. Cyranoski D. Materials science: China’s crystal cache. Nature, 2009, 457: 953–955

    CAS  Google Scholar 

  13. Eismann U, Scholz M, Paasch-Colberg T, et al. Short, shorter, shortest: Diode lasers in the deep ultraviolet. Laser Focus World, 2016, 52: 39–44

    Google Scholar 

  14. Kiss T, Shimojima T, Kanetaka F, et al. Ultrahigh-resolution photoemission spectroscopy of superconductors using a VUV laser. J Electron Spectr Related Phenomena, 2005, 144: 953–956

    Google Scholar 

  15. Koralek JD, Douglas JF, Plumb NC, et al. Laser based angle-resolved photoemission, the sudden approximation, and quasiparticle-like spectral peaks in Bi2Sr2CaCu2O8+δ. Phys Rev Lett, 2006, 96: 017005

    CAS  Google Scholar 

  16. Meng J, Liu G, Zhang W, et al. Coexistence of Fermi arcs and Fermi pockets in a high-Tc copper oxide superconductor. Nature, 2009, 462: 335–338

    CAS  Google Scholar 

  17. Chen TA, Chuu CP, Tseng CC, et al. Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111). Nature, 2020, 579: 219–223

    CAS  Google Scholar 

  18. Chen C, Sasaki T, Li R, et al. Nonlinear Optical Borate Crystals: Principles and Applications. Weinheim: Wiley-VCH, 2012

    Google Scholar 

  19. Zhang W, Yu H, Wu H, et al. Phase-matching in nonlinear optical compounds: a materials perspective. Chem Mater, 2017, 29: 2655–2668

    CAS  Google Scholar 

  20. Halasyamani PS, Rondinelli JM. The must-have and nice-to-have experimental and computational requirements for functional frequency doubling deep-UV crystals. Nat Commun, 2018, 9: 2972

    Google Scholar 

  21. Chen C, Lin Z, Wang Z. The development of new borate-based UV nonlinear optical crystals. Appl Phys B, 2005, 80: 1–25

    CAS  Google Scholar 

  22. Yao W, He R, Wang X, et al. Analysis of deep-UV nonlinear optical borates: approaching the end. Adv Opt Mater, 2014, 2: 411–417

    CAS  Google Scholar 

  23. Tran TT, Yu H, Rondinelli JM, et al. Deep ultraviolet nonlinear optical materials. Chem Mater, 2016, 28: 5238–5258

    CAS  Google Scholar 

  24. Chen C, Wu Y, Jiang A, et al. New nonlinear-optical crystal: LiB3O5. J Opt Soc Am B, 1989, 6: 616–621

    CAS  Google Scholar 

  25. Chen CT, Wu BC, Jiang AD, et al. A new-type ultraviolet SHG crystal—beta-BaB2O4. Sci Sin Ser B, 1985, 28: 235–243

    Google Scholar 

  26. Chen CT, Wang GL, Wang XY, et al. Deep-UV nonlinear optical crystal KBe2BO3F2—discovery, growth, optical properties and applications. Appl Phys B, 2009, 97: 9–25

    CAS  Google Scholar 

  27. Xu B, Liu L, Wang X, et al. Generation of high power 200 mW laser radiation at 177.3 nm in KBe2BO3F2 crystal. Appl Phys B, 2015, 121: 489–494

    CAS  Google Scholar 

  28. Kang L, Liang F, Jiang X, et al. First-principles design and simulations promote the development of nonlinear optical crystals. Acc Chem Res, 2019, 53: 209–217

    Google Scholar 

  29. Chen C, Ye N, Lin J, et al. Computer-assisted search for nonlinear optical crystals. Adv Mater, 1999, 11: 1071–1078

    CAS  Google Scholar 

  30. Lin J, Lee MH, Liu ZP, et al. Mechanism for linear and nonlinear optical effects in β-BaB2O4 crystals. Phys Rev B, 1999, 60: 13380–13389

    CAS  Google Scholar 

  31. He R, Lin ZS, Lee MH, et al. Ab initio studies on the mechanism for linear and nonlinear optical effects in YAl3(BO3)4. J Appl Phys, 2011, 109: 103510

    Google Scholar 

  32. Lin ZS, Kang L, Zheng T, et al. Strategy for the optical property studies in ultraviolet nonlinear optical crystals from density functional theory. Comput Mater Sci, 2012, 60: 99–104

    CAS  Google Scholar 

  33. He R, Huang H, Kang L, et al. Bandgaps in the deep ultraviolet borate crystals: prediction and improvement. Appl Phys Lett, 2013, 102: 231904

    Google Scholar 

  34. Lin Z, Jiang X, Kang L, et al. First-principles materials applications and design of nonlinear optical crystals. J Phys D-Appl Phys, 2014, 47: 253001

    Google Scholar 

  35. Kang L, Luo S, Huang H, et al. Prospects for fluoride carbonate nonlinear optical crystals in the UV and Deep-UV regions. J Phys Chem C, 2013, 117: 25684–25692

    CAS  Google Scholar 

  36. Kang L, Luo S, Peng G, et al. First-principles design of a deep-ultraviolet nonlinear-optical crystal from KBe2BO3F2 to NH4Be2BO3F2. Inorg Chem, 2015, 54: 10533–10535

    CAS  Google Scholar 

  37. Peng G, Ye N, Lin Z, et al. NH4Be2BO3F2 and y-Be2BO3F: Overcoming the layering habit in KBe2BO3F2 for the next-generation deep-ultraviolet nonlinear optical materials. Angew Chem Int Ed, 2018, 57: 8968–8972

    CAS  Google Scholar 

  38. Zhang B, Shi G, Yang Z, et al. Fluorooxoborates: beryllium-free deep-ultraviolet nonlinear optical materials without layered growth. Angew Chem Int Ed, 2017, 56: 3916–3919

    CAS  Google Scholar 

  39. Wang X, Wang Y, Zhang B, et al. CsB4O6F: A congruent-melting deep-ultraviolet nonlinear optical material by combining superior functional units. Angew Chem Int Ed, 2017, 56: 14119–14123

    CAS  Google Scholar 

  40. Shi G, Wang Y, Zhang F, et al. Finding the next deep-ultraviolet nonlinear optical material: NH4B4O6F. J Am Chem Soc, 2017, 139: 10645–10648

    CAS  Google Scholar 

  41. Wang Y, Zhang B, Yang Z, et al. Cation-tuned synthesis of fluorooxoborates: towards optimal deep-ultraviolet nonlinear optical materials. Angew Chem Int Ed, 2018, 57: 2150–2154

    CAS  Google Scholar 

  42. Mutailipu M, Zhang M, Zhang B, et al. SrB5O7F3 functionalized with [B5O9F3]6− chromophores: Accelerating the rational design of deep-ultraviolet nonlinear optical materials. Angew Chem Int Ed, 2018, 57: 6095–6099

    CAS  Google Scholar 

  43. Luo M, Liang F, Song Y, et al. M2B10O14F6 (M = Ca, Sr): Two noncentrosymmetric alkaline earth fluorooxoborates as promising next-generation deep-ultraviolet nonlinear optical materials. J Am Chem Soc, 2018, 140: 3884–3887

    CAS  Google Scholar 

  44. Andriyevsky B, Doll K, Cakmak G, et al. DFT-based ab initio study of structural and electronic properties of lithium fluorooxoborate LiB6O9F and experimentally observed second harmonic generation. Phys Rev B, 2011, 84: 125112

    Google Scholar 

  45. Jain A, Ong SP, Hautier G, et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater, 2013, 1: 011002

    Google Scholar 

  46. Jiang X, Luo S, Kang L, et al. First-principles evaluation of the alkali and/or alkaline earth beryllium borates in deep ultraviolet nonlinear optical applications. ACS Photonics, 2015, 2: 1183–1191

    CAS  Google Scholar 

  47. Xia Y, Chen C, Tang D, et al. New nonlinear optical crystals for UV and VUV harmonic generation. Adv Mater, 1995, 7: 79–81

    CAS  Google Scholar 

  48. Clark SJ, Segall MD, Pickard CJ, et al. First principles methods using CASTEP. Z für Kristallographie — Crystline Mater, 2005, 5–6: 567–570

    Google Scholar 

  49. Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys Rev, 1965, 140: A1133–A1138

    Google Scholar 

  50. Rappe AM, Rabe KM, Kaxiras E, et al. Optimized pseudopotentials. Phys Rev B, 1990, 41: 1227–1230

    CAS  Google Scholar 

  51. Pfrommer BG, Côté M, Louie SG, et al. Relaxation of crystals with the quasi-Newton method. J Comput Phys, 1997, 131: 233–240

    CAS  Google Scholar 

  52. Adamo C, Barone V. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys, 1999, 110: 6158–6170

    CAS  Google Scholar 

  53. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865–3868

    CAS  Google Scholar 

  54. Baroni S, de Gironcoli S, Dal Corso A, et al. Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys, 2001, 73: 515–562

    CAS  Google Scholar 

  55. Payne MC, Teter MP, Allan DC, et al. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev Mod Phys, 1992, 64: 1045–1097

    CAS  Google Scholar 

  56. Kang L, Luo S, Huang H, et al. Ab initio studies on the optical effects in the deep ultraviolet nonlinear optical crystals of the KBe2BO3F2 family. J Phys-Condens Matter, 2012, 24: 335503

    Google Scholar 

  57. Chen C, Luo S, Wang X, et al. Deep UV nonlinear optical crystal: RbBe2(BO3)F2. J Opt Soc Am B, 2009, 26: 1519–1525

    CAS  Google Scholar 

  58. Huang H, Chen C, Wang X, et al. Ultraviolet nonlinear optical crystal: CsBe2BO3F2. J Opt Soc Am B, 2011, 28: 2186–2190

    CAS  Google Scholar 

  59. Guo S, Kang L, Liu L, et al. Deep-ultraviolet nonlinear optical crystal NaBe2BO3F2—Structure, growth and optical properties. J Cryst Growth, 2019, 518: 45–50

    CAS  Google Scholar 

  60. McMillen CD, Hu J, VanDerveer D, et al. Trigonal structures of ABe2BO3F2 (A = Rb, Cs, Tl) crystals. Acta Crystlogr B Struct Sci, 2009, 65: 445–449

    CAS  Google Scholar 

  61. Chen C, Wang Y, Wu B, et al. Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr2Be2B2O7. Nature, 1995, 373: 322–324

    CAS  Google Scholar 

  62. Huang H, Yao J, Lin Z, et al. Molecular engineering design to resolve the layering habit and polymorphism problems in deep UV NLO crystals: New structures in MM′Be2B2O6F (M=Na, M′=Ca; M= K, M′=Ca, Sr). Chem Mater, 2011, 23: 5457–5463

    CAS  Google Scholar 

  63. Huang H, Yao J, Lin Z, et al. NaSr3Be3B3O9F4: A promising deep-ultraviolet nonlinear optical material resulting from the cooperative alignment of the [Be3B3O12F]10− anionic group. Angew Chem Int Ed, 2011, 50: 9141–9144

    CAS  Google Scholar 

  64. Wang X, Liu L, Wang X, et al. Growth and optical properties of the novel nonlinear optical crystal NaSr3Be3B3O9F4. CrystEngComm, 2015, 17: 925–929

    CAS  Google Scholar 

  65. Guo S, Jiang X, Liu L, et al. BaBe2BO3F3: A KBBF-type deep-ultraviolet nonlinear optical material with reinforced [Be2BO3F2] layers and short phase-matching wavelength. Chem Mater, 2016, 28: 8871–8875

    CAS  Google Scholar 

  66. Hu Z, Yue Y, Chen X, et al. Growth and structure redetermination of a nonlinear BaAlBO3F2 crystal. Solid State Sci, 2011, 13: 875–878

    CAS  Google Scholar 

  67. Zhao S, Gong P, Luo S, et al. Beryllium-free Rb3Al3B3O10F with reinforced interlayer bonding as a deep-ultraviolet nonlinear optical crystal. J Am Chem Soc, 2015, 137: 2207–2210

    CAS  Google Scholar 

  68. Zhao S, Kang L, Shen Y, et al. Designing a beryllium-free deep-ultraviolet nonlinear optical material without a structural instability problem. J Am Chem Soc, 2016, 138: 2961–2964

    CAS  Google Scholar 

  69. Li RK, Chen P. Cation coordination control of anionic group alignment to maximize SHG effects in the BaMBO3F (M = Zn, Mg) series. Inorg Chem, 2010, 49: 1561–1565

    CAS  Google Scholar 

  70. Yan X, Luo S, Lin Z, et al. LaBeB3O7: a new phase-matchable nonlinear optical crystal exclusively containing the tetrahedral XO4 (X = B and Be) anionic groups. J Mater Chem C, 2013, 1: 3616–3622

    CAS  Google Scholar 

  71. Yan X, Luo S, Lin Z, et al. ReBe2B5O11 (Re = Y, Gd): Rare-earth beryllium borates as deep-ultraviolet nonlinear-optical materials. Inorg Chem, 2014, 53: 1952–1954

    CAS  Google Scholar 

  72. Pan F, Shen G, Wang R, et al. Growth, characterization and nonlinear optical properties of SrB4O7 crystals. J Cryst Growth, 2002, 241: 108–114

    CAS  Google Scholar 

  73. Becker P. Borate materials in nonlinear optics. Adv Mater, 1998, 10: 979–992

    CAS  Google Scholar 

  74. Liang F, Kang L, Gong P, et al. Rational design of deep-ultraviolet nonlinear optical materials in fluorooxoborates: toward optimal planar configuration. Chem Mater, 2017, 29: 7098–7102

    CAS  Google Scholar 

  75. Zou G, Ye N, Huang L, et al. Alkaline-alkaline earth fluoride carbonate crystals ABCO3F (A = K, Rb, Cs; B = Ca, Sr, Ba) as nonlinear optical materials. J Am Chem Soc, 2011, 133: 20001–20007

    CAS  Google Scholar 

  76. Tran TT, He J, Rondinelli JM, et al. RbMgCO3F: A new berylliumfree deep-ultraviolet nonlinear optical material. J Am Chem Soc, 2015, 137: 10504–10507

    CAS  Google Scholar 

  77. Kang L, Lin Z, Liu F, et al. Removal of A-site alkali and alkaline earth metal cations in KBe2BO3F2-type layered structures to enhance the deep-ultraviolet nonlinear optical capability. Inorg Chem, 2018, 57: 11146–11156

    CAS  Google Scholar 

  78. Liang F, Kang L, Zhang X, et al. Molecular construction using (C3N3O3)3− anions: Analysis and prospect for inorganic metal cyanurates nonlinear optical materials. Cryst Growth Des, 2017, 17: 4015–4020

    CAS  Google Scholar 

  79. Li Z, Lin Z, Wu Y, et al. Crystal growth, optical properties measurement, and theoretical calculation of BPO4. Chem Mater, 2004, 16: 2906–2908

    CAS  Google Scholar 

  80. Parise JB, Gier TE. Hydrothermal syntheses and structural refinements of single crystal lithium boron germanate and silicate, LiBGeO4 and LiBSiO4. Chem Mater, 1992, 4: 1065–1067

    CAS  Google Scholar 

  81. Kang L, Liang F, Gong P, et al. Two novel deep-ultraviolet nonlinear optical crystals with shorter phase-matching second harmonic generation than KBe2BO3F2: A first-principles prediction. Phys Status Solidi RRL, 2018, 18: 1800276

    Google Scholar 

  82. Zhang X, Guan RF, Wu DQ, et al. Enzyme immobilization on amino-functionalized mesostructured cellular foam surfaces, characterization and catalytic properties. J Mol Catal B-Enzymatic, 2005, 33: 43–50

    Google Scholar 

  83. Beall GW, Milligan WO, Mroczkowski S. Yttrium carbonate hydroxide. Acta Crystlogr B Struct Crystlogr Cryst Chem, 1976, 32: 3143–3144

    Google Scholar 

  84. Yang Z, Tudi A, Lei BH, et al. Enhanced nonlinear optical functionality in birefringence and refractive index dispersion of the deep-ultraviolet fluorooxoborates. Sci China Mater, 2020, doi: https://doi.org/10.1007/s40843-020-1279-6

  85. Wei Z, Zhang W, Zeng H, et al. Prediction of ternary fluorooxoborates with coplanar triangular units [BOxF3−x]x from first-principles. Dalton Trans, 2020, 49: 5424–5428

    CAS  Google Scholar 

  86. Zhang Z, Wang Y, Zhang B, et al. Polar fluorooxoborate, NaB4O6F: A promising material for ionic conduction and nonlinear optics. Angew Chem Int Ed, 2018, 57: 6577–6581

    CAS  Google Scholar 

  87. Trabs P, Noack F, Aleksandrovsky AS, et al. Generation of coherent radiation in the vacuum ultraviolet using randomly quasiphase-matched strontium tetraborate. Opt Lett, 2016, 41: 618–621

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC 51872297, 51890864, 11574024), and NSAF (U1930402). Lin Z acknowledges support from outstanding member in Youth Innovation Promotion Association at the Chinese Academy of Sciences (CAS), and Fujian Institute of Innovation (FJCXY18010201) in CAS.

Author information

Authors and Affiliations

Authors

Contributions

Kang L performed the theoretical calculations. Kang L, Lin Z and Huang B supervised the theoretical analysis and wrote the paper. Liang F gave the academic suggestion. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Zheshuai Lin  (林哲帅) or Bing Huang  (黄兵).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Lei Kang received his BSc in physics from Shandong University, and PhD in condensed matter physics from the Technical Institute of Physics and Chemistry (TIPC), Chinese Academy of Sciences (CAS) in 2016. He was a postdoctoral fellow at Beijing Computational Science Research Center (CSRC) from 2016 to 2019. Since 2020, he has worked as an associate professor at TIPC, CAS. His current research focuses on first-principles calculations for nonlinear optical materials.

Fei Liang received his BSc in physics from Nanjing University, and PhD in materials science from TIPC, CAS in 2019. Then, he joined the Institute of Crystal Materials, Shandong University. His current interest focuses on the structural design and property characterization of laser crystals and nonlinear optical crystals.

Zheshuai Lin received his BSc in physics from Tianjin University, and PhD from Fujian Institute of Research on the Structure of Matter, CAS in 2002. From 2004 to 2008, he was a research associate at Cambridge University, UK. Since 2008, he has worked as a research professor in TIPC, CAS. His research into nonlinear optical crystals employs a variety of modeling techniques spanning analytical and quantum mechanics, as well as experimental exploration.

Bing Huang received his BS in physics from Jilin University, and PhD in condensed matter physics from Tsinghua University in 2010. Between 2010 and 2015, he was a post-doctoral or research fellow at National Renewable Energy Lab, Oak Ridge National Lab and University of Utah. Since 2016, he has worked as a tenure-track professor at CSRC and an adjoint professor at Beijing Normal University. His current research focuses on computational semiconductor physics.

Supplementary Information for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, L., Liang, F., Lin, Z. et al. Deep-ultraviolet nonlinear optical crystals by design: A computer-aided modeling blueprint from first principles. Sci. China Mater. 63, 1597–1612 (2020). https://doi.org/10.1007/s40843-020-1369-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-020-1369-x

Keywords

Navigation