Skip to main content
Log in

Raman tensor of layered WS2

层状WS2的拉曼张量

  • Letters
  • Published:
Science China Materials Aims and scope Submit manuscript

摘要

为完善范德瓦尔斯层状材料有关于拉曼张量的基本信息, 本文采用角分辨偏振拉曼光谱对二硫化钨的拉曼张量进行研究. 根据拉曼选择定则, 我们分析了角分辨拉曼光谱与偏振的依赖关系, 并结合实验结果获得了面内和面外各振动模式的拉曼张量元和与张量元对应的微分极化率等信息. 实验结果表明, 截面测试得到的拉曼强度具有偏振依赖性, 其中沿c轴振动的A1g模式引起的微分极化率明显大于E1g和E2g模式, 并且A1g模式自身在沿c轴的极化率也较沿a轴或b轴的大. 这种通过角分辨偏振拉曼光谱研究拉曼张量的方法对其他范德瓦尔斯层状材料具有普遍性.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Butler SZ, Hollen SM, Cao L, et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano, 2013, 7: 2898–2926

    CAS  Google Scholar 

  2. Wang QH, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotech, 2012, 7: 699–712

    CAS  Google Scholar 

  3. Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors. Nat Nanotech, 2011, 6: 147–150

    CAS  Google Scholar 

  4. Shanmugam M, Bansal T, Durcan CA, et al. Schottky-barrier solar cell based on layered semiconductor tungsten disulfide nanofilm. Appi Phys Lett, 2012, 101: 263902

    Google Scholar 

  5. Gao MR, Chan MKY, Sun Y. Edge-terminated molybdenum disulfide with a 9.4-À interlayer spacing for electrochemical hydrogen production. Nat Commun, 2015, 6: 7493

    Google Scholar 

  6. Ataca C, Şahin H, Ciraci S. Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. J Phys Chem C, 2012, 116: 8983–8999

    CAS  Google Scholar 

  7. Fiori G, Bonaccorso F, Iannaccone G, et al. Electronics based on two-dimensional materials. Nat Nanotech, 2014, 9: 768–779

    CAS  Google Scholar 

  8. Chhowalla M, Jena D, Zhang H. Two-dimensional semiconductors for transistors. Nat Rev Mater, 2016, 1: 1–5

    Google Scholar 

  9. M T, Late DJ. Temperature dependent phonon shifts in single-layer WS2. ACS Appi Mater Interfaces, 2014, 6: 1158–1163

    CAS  Google Scholar 

  10. Coleman JN, Lotya M, O’Neill A, et al. Two-dimensional na-nosheets produced by liquid exfoliation of layered materials. Science, 2011, 331: 568–571

    CAS  Google Scholar 

  11. Coleman JN. Liquid exfoliation of defect-free graphene. Ace Chem Res, 2013, 46: 14–22

    CAS  Google Scholar 

  12. Okada M, Sawazaki T, Watanabe K, et al. Direct chemical vapor deposition growth of WS2 atomic layers on hexagonal boron nitride. ACS Nano, 2014, 8: 8273–8277

    CAS  Google Scholar 

  13. Huang X, Zeng Z, Zhang H. Metal dichalcogenide nanosheets: Preparation, properties and applications. Chem Soc Rev, 2013, 42: 1934

    CAS  Google Scholar 

  14. Ding Y, Wang Y, Ni J, et al. First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers. Physica B-Con-densed Matter, 2011, 406: 2254–2260

    CAS  Google Scholar 

  15. Fernandez HA, Withers F, Russo S, et al. Electrically tuneable exciton-polaritons through free electron doping in monolayer WS2 microcavities. Adv Opt Mater, 2019, 7: 1900484

    Google Scholar 

  16. Han S, Boguschewski C, Gao Y, et al. Incoherent phonon popu-lation and exciton-exciton annihilation dynamics in monolayer WS2 revealed by time-resolved resonance Raman scattering. Opt Express, 2019, 27: 29949–29961

    CAS  Google Scholar 

  17. Zheng W, Zheng R, Huang F, et al. Raman tensor of A1N bulk single crystal. Photon Res, 2015, 3: 38–43

    CAS  Google Scholar 

  18. Sander T, Eisermann S, Meyer BK, et al. Raman tensor elements of wurtzite ZnO. Phys Rev B, 2012, 85: 165208

    Google Scholar 

  19. Lin HC, Feng ZC, Chen MS, et al. Raman scattering study on anisotropic property of wurtzite GaN. J Appl Phys, 2009, 105: 036102

    Google Scholar 

  20. Su J, Liu K, Wang F, et al. van der Waals 2D transition metal tellurides. Adv Mater Interfaces, 2019, 6: 1900741

    CAS  Google Scholar 

  21. Chen SY, Goldstein T, Venkataraman D, et al. Activation of new Raman modes by inversion symmetry breaking in type II Weyl semimetal candidate T’-MoTe2. Nano Lett, 2016, 16: 5852–5860

    CAS  Google Scholar 

  22. Zhong HX, Gao S, Shi JJ, et al. Quasiparticle band gaps, excitonic effects, and anisotropic optical properties of the monolayer distorted IT diamond-chain structures ReS2 and ReSe2. Phys Rev B, 2015, 92: 115438

    Google Scholar 

  23. Song Q, Pan X, Wang H, et al. The in-plane anisotropy of WTe2 investigated by angle-dependent and polarized Raman spectroscopy. Sci Rep, 2016, 6: 29254

    Google Scholar 

  24. Zhu M, Zhao Y, Feng Q, et al. Linear dichroism and nondestructive crystalline identification of anisotropic semimetal few-layer MoTe2. Small, 2019, 15: 1903159

    CAS  Google Scholar 

  25. Soluyanov AA, Gresch D, Wang Z, et al. Type-II Weyl semimetals. Nature, 2015, 527: 495–498

    CAS  Google Scholar 

  26. Chang TR, Xu SY, Chang G, et al. Prediction of an arc-tunable Weyl Fermion metallic state in MoxW1_xTe2. Nat Commun, 2016, 7: 10639

    CAS  Google Scholar 

  27. Li P, Wen Y, He X, et al. Evidence for topological type-II Weyl semimetal WTe2. Nat Commun, 2017, 8: 2150

    Google Scholar 

  28. Jimenez Sandoval S, Yang D, Frindt RF, et al. Raman study and lattice dynamics of single molecular layers of MoS2. Phys Rev B, 1991, 44: 3955–3962

    CAS  Google Scholar 

  29. Zhang X, Han WP, Wu JB, et al. Raman spectroscopy of shear and layer breathing modes in multilayer MoS2. Phys Rev B, 2013, 87: 115413

    Google Scholar 

  30. Zhang X, Qiao XF, Shi W, et al. Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem Soc Rev, 2015, 44: 2757–2785

    CAS  Google Scholar 

  31. Gong C, Zhang Y, Chen W, et al. Electronic and optoelectronic applications based on 2D novel anisotropic transition metal dichalcogenides. Adv Sci, 2017, 4: 1700231

    Google Scholar 

  32. McDonnell LP, Huang CC, Cui Q, et al. Probing excitons, trions, and dark excitons in monolayer WS2 using resonance Raman spectroscopy. Nano Lett, 2018, 18: 1428–1434

    CAS  Google Scholar 

  33. Sorkin V, Pan H, Shi H, et al. Nanoscale transition metal dichalcogenides: Structures, properties, and applications. Critical Rev Solid State Mater Sci, 2014, 39: 319–367

    CAS  Google Scholar 

  34. Tripathi LN, Barua S. Growth and characterization of two-dimensional crystals for communication and energy applications. Prog Cryst Growth Charact Mater, 2019, 65: 100465

    Google Scholar 

  35. Chakraborty B, Matte HSSR, Sood AK, et al. Layer-dependent resonant Raman scattering of a few layer MoS2. J Raman Spectrosc, 2013, 44: 92–96

    CAS  Google Scholar 

  36. Lee C, Yan H, Brus LE, et al. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano, 2010, 4: 2695–2700

    CAS  Google Scholar 

  37. Barbosa AN, Figueroa NS, Giarola M, et al. Straightforward identification of monolayer WS2 structures by Raman spectroscopy. Mater Chem Phys, 2020, 243: 122599

    CAS  Google Scholar 

  38. Zheng W, Zheng RS, Wu HL, et al. Strongly anisotropic behavior of ATO) phonon mode in bulk AIN. J Alloys Compd, 2014, 584: 374–376

    CAS  Google Scholar 

  39. Kranert C, Sturm C, Schmidt-Grund R, et al. Raman tensor formalism for optically anisotropic crystals. Phys Rev Lett, 2016, 116: 127401

    Google Scholar 

  40. Kranert C, Sturm C, Schmidt-Grund R, et al. Raman tensor elements of ß-Ga203. Sci Rep, 2016, 6: 1–9

    Google Scholar 

  41. Zheng W, Li F, Li G, et al. Laser tuning in van der Waals crystals. ACS Nano, 2018, 12: 2001–2007

    CAS  Google Scholar 

  42. Zheng W, Zhu Y, Li F, et al. Raman spectroscopy regulation in van der Waals crystals. Photon Res, 2018, 6: 991–995

    CAS  Google Scholar 

  43. Zheng W, Yan J, Li F, et al. Elucidation of “phase difference” in Raman tensor formalism. Photon Res, 2018, 6: 709–712

    CAS  Google Scholar 

  44. Cardona M, Gunitherodt G Light Scattering in Solides IL New York: Springer-Verlag Berlin Heidelberg, 1982

    Google Scholar 

  45. Qiao S, Yang H, Bai Z, et al. Identifying the number of WS2 layers via Raman and photoluminescence spectrum. Adv Eng Res, 2017, 141: 1408–1413

    Google Scholar 

  46. Huang LF, Zeng Z. Roles of mass, structure, and bond strength in the phonon properties and lattice anharmonicity of single-layer Mo and W dichalcogenides. J Phys Chem C, 2015, 119: 18779–18789

    CAS  Google Scholar 

  47. Ding Y, Zheng W, Jin M, et al. Raman tensor of layered MoS2. Opt Lett, 2020, 45: 1313

    Google Scholar 

  48. Jin M, Zheng W, Ding Y, et al. Raman tensor of WSe2via angle-resolved polarized Raman spectroscopy. J Phys Chem C, 2019, 123: 29337–29342

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (91833301, 61427901, 61604178 and U1505252), and the Guangzhou Science and Technology Program (201607020036).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Ding Y, Lin Z, and Zhu R performed the experiments; Jin M and Zhu Y designed the model and performed the calculations; Ding Y wrote the paper with support from Zheng W and Huang F. All authors contributed to the general discussion.

Corresponding author

Correspondence to Wei Zheng  (郑伟).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Ying Ding was born in 1995. She is a PhD candidate at the School of Materials, Sun Yatsen University under the supervision of Prof. Feng Huang and Prof. Wei Zheng. Her current scientific research direction is mainly on the Raman tensor of van der Waals layered materials.

Wei Zheng received his PhD degree from Shenzhen University in 2014. Now he is a professor in the School of Materials at Sun Yat-sen University. His research interest focuses on semiconductor-based vacuum-ultraviolet (10-200 nm) photodetectors and condensed matter physics in ultra-wide bandgap semiconductors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Zheng, W., Lin, Z. et al. Raman tensor of layered WS2. Sci. China Mater. 63, 1848–1854 (2020). https://doi.org/10.1007/s40843-020-1321-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-020-1321-4

Navigation