Skip to main content
Log in

Template-free fabrication of fractal porous Y2O3 monolithic foam and its functional modification by Ni-doping

无模板法合成分形孔结构Y2O3泡沫单块及其镍掺杂功能化

  • Letters
  • Published:
Science China Materials Aims and scope Submit manuscript

摘要

自相似的分形结构如云、 树、 雪花、 闪电、 人类循环系统等广泛存在于自然界中, 然而自然界中自发形成的分形结构很难用常规的实验室合成方法得到. 本文利用一种无模板的、 基于金 属-小分子配位聚合作用的自组装方法, 制备了具有分形孔结构的整体钇-氨基酸配合物材料, 并通过焙烧得到分形孔结构Y2O3. 材料的孔尺度分布范围从微米到纳米尺度, 最为有趣的是, 这种孔结构表现出自相似特征的结构, 即任意一级的大孔的孔壁都是由次级尺度范围的二级小孔孔结构组成. 整体配合物由几十微米的微米孔构筑而成, 微米孔的孔壁由尺度更小的次级微米孔组成, 次级微米孔的孔壁继续由100 nm左右的纳米孔组成. 继续放大后可以看到纳米孔的孔壁包含由纳米晶粒堆积而成的更小的介孔(2–10 nm). 通过在合成中引入其他金属阳离子(Ni2+, Bi3+, Ce3+, Eu3+), 可以得到分形孔包裹镶嵌的掺杂型分形孔混合氧化物. 以Ni2+为例, 分散的NiO纳米颗粒嵌入Y2O3泡沫分形孔结构中. 在乙醇水蒸气重整制氢反应中, 与常规的负载型Ni催化剂相比, 被分形孔Y2O3封装的Ni催化剂表现出更优的低温催化活性.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Li Y, Fu ZY, Su BL. Hierarchically structured porous materials for energy conversion and storage. Adv Funct Mater, 2012, 22: 4634–4667

    Article  CAS  Google Scholar 

  2. Kitada A, Hasegawa G, Kobayashi Y, et al. Selective preparation of macroporous monoliths of conductive titanium oxides TinO2n−1(n=2, 3, 4, 6). J Am Chem Soc, 2012, 134: 10894–10898

    Article  CAS  Google Scholar 

  3. Yang XY, Chen LH, Li Y, et al. Hierarchically porous materials: Synthesis strategies and structure design. Chem Soc Rev, 2017, 46: 481–558

    Article  CAS  Google Scholar 

  4. Liu Q, Shi H, Yang T, et al. Sequential growth of hierarchical N-doped carbon-MoS2 nanocomposites with variable nanostructures. J Mater Chem A, 2019, 7: 6197–6204

    Article  CAS  Google Scholar 

  5. Yang T, Zhou R, Wang DW, et al. Hierarchical mesoporous yolk-shell structured carbonaceous nanospheres for high performance electrochemical capacitive energy storage. Chem Commun, 2015, 51: 2518–2521

    Article  CAS  Google Scholar 

  6. Chen Z, Li Z, Zhang Y, et al. A green route for the synthesis of nano-sized hierarchical ZSM-5 zeolite with excellent DTO catalytic performance. Chem Eng J, 2020, 388: 124322

    Article  Google Scholar 

  7. Nakanishi K, Tanaka N. Sol-gel with phase separation. Hierarchically porous materials optimized for high-performance liquid chromatography separations. Acc Chem Res, 2007, 40: 863–873

    Article  CAS  Google Scholar 

  8. Kuang D, Brezesinski T, Smarsly B. Hierarchical porous silica materials with a trimodal pore system using surfactant templates. J Am Chem Soc, 2004, 126: 10534–10535

    Article  CAS  Google Scholar 

  9. You B, Jiang N, Sheng M, et al. Hierarchically porous urchin-like Ni2P superstructures supported on nickel foam as efficient bi-functional electrocatalysts for overall water splitting. ACS Catal, 2015, 6: 714–721

    Article  Google Scholar 

  10. Xiao C, Li Y, Lu X, et al. Bifunctional porous NiFe/NiCo2O4/Ni foam electrodes with triple hierarchy and double synergies for efficient whole cell water splitting. Adv Funct Mater, 2016, 26: 3515–3523

    Article  CAS  Google Scholar 

  11. Zhang C, Chen Z, Guo Z, et al. Additive-free synthesis of 3D porous V2O5 hierarchical microspheres with enhanced lithium storage properties. Energy Environ Sci, 2013, 6: 974

    Article  CAS  Google Scholar 

  12. Wang DW, Li F, Liu M, et al. 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew Chem Int Ed, 2008, 47: 373–376

    Article  CAS  Google Scholar 

  13. Xia X, Tu J, Zhang Y, et al. High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage. ACS Nano, 2012, 6: 5531–5538

    Article  CAS  Google Scholar 

  14. Xiao W, Yang S, Zhang P, et al. Facile synthesis of highly porous metal oxides by mechanochemical nanocasting. Chem Mater, 2018, 30: 2924–2929

    Article  CAS  Google Scholar 

  15. Thompson BR, Horozov TS, Stoyanov SD, et al. Hierarchically structured composites and porous materials from soft templates: Fabrication and applications. J Mater Chem A, 2019, 7: 8030–8049

    Article  CAS  Google Scholar 

  16. Shen Z, Zhang G, Zhou H, et al. Macroporous lanthanide-organic coordination polymer foams and their corresponding lanthanide oxides. Adv Mater, 2008, 20: 984–988

    Article  CAS  Google Scholar 

  17. Mandelbrot BB. The Fractal Geometry of Nature. New York: W. H. Freeman, 1982

    Google Scholar 

  18. Grayson SM, Fréchet JMJ. Convergent dendrons and dendrimers: From synthesis to applications. Chem Rev, 2001, 101: 3819–3868

    Article  CAS  Google Scholar 

  19. Wang L, Liu R, Gu J, et al. Self-assembly of supramolecular fractals from generation 1 to 5. J Am Chem Soc, 2018, 140: 14087–14096

    Article  CAS  Google Scholar 

  20. Shang J, Wang Y, Chen M, et al. Assembling molecular Sierpiński triangle fractals. Nat Chem, 2015, 7: 389–393

    Article  CAS  Google Scholar 

  21. Zhang X, Li N, Gu GC, et al. Controlling molecular growth between fractals and crystals on surfaces. ACS Nano, 2015, 9: 11909–11915

    Article  CAS  Google Scholar 

  22. Perissinotto AP, Awano CM, Donatti DA, et al. Mass and surface fractal in supercritical dried silica aerogels prepared with additions of sodium dodecyl sulfate. Langmuir, 2014, 31: 562–568

    Article  Google Scholar 

  23. Matsushita M, Sano M, Hayakawa Y, et al. Fractal structures of zinc metal leaves grown by electrodeposition. Phys Rev Lett, 1984, 53: 286–289

    Article  CAS  Google Scholar 

  24. Cui X, Xiao P, Wang J, et al. Highly branched metal alloy networks with superior activities for the methanol oxidation reaction. Angew Chem Int Ed, 2017, 56: 4488–4493

    Article  CAS  Google Scholar 

  25. Geng D, Wu B, Guo Y, et al. Fractal etching of graphene. J Am Chem Soc, 2013, 135: 6431–6434

    Article  CAS  Google Scholar 

  26. Fu J, Jiao J, Song H, et al. Fractal-in-a-sphere: Confined self-assembly of fractal silica nanoparticles. Chem Mater, 2020, 32: 341–347

    Article  CAS  Google Scholar 

  27. Yang X, Zhuang J, Li X, et al. Hierarchically nanostructured rutile arrays: Acid vapor oxidation growth and tunable morphologies. ACS Nano, 2009, 3: 1212–1218

    Article  CAS  Google Scholar 

  28. Nielsen M, Alberico E, Baumann W, et al. Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide. Nature, 2013, 495: 85–89

    Article  CAS  Google Scholar 

  29. Mattos LV, Jacobs G, Davis BH, et al. Production of hydrogen from ethanol: Review of reaction mechanism and catalyst deactivation. Chem Rev, 2012, 112: 4094–4123

    Article  CAS  Google Scholar 

  30. Haryanto A, Fernando S, Murali N, et al. Current status of hydrogen production techniques by steam reforming of ethanol: A review. Energy Fuels, 2005, 19: 2098–2106

    Article  CAS  Google Scholar 

  31. Liu Z, Senanayake SD, Rodrigue JA. Catalysts for the steam reforming of ethanol and other alcohols. In: Basile A, et al. (Eds.). Ethanol Science and Engineering. Amsterdam: Elsevier, 2019, 133–158

    Chapter  Google Scholar 

  32. Vicente J, Montero C, Ereña J, et al. Coke deactivation of Ni and Co catalysts in ethanol steam reforming at mild temperatures in a fluidized bed reactor. Int J Hydrogen Energy, 2014, 39: 12586–12596

    Article  CAS  Google Scholar 

  33. Fatsikostas A. Reaction network of steam reforming of ethanol over Ni-based catalysts. J Catal, 2004, 225: 439–452

    Article  CAS  Google Scholar 

  34. Xu W, Liu Z, Johnston-Peck AC, et al. Steam reforming of ethanol on Ni/CeO2: Reaction pathway and interaction between Ni and the CeO2 support. ACS Catal, 2013, 3: 975–984

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21773128, 21534005 and 21421001). Chen R acknowledges the support from China Scholarship Council. The work carried out at Brookhaven National Laboratory was supported by the US Department of Energy (DE-SC0012704). Sanjaya D. Senanayake is supported by a US Department of Energy Early Career Award. This research used resources of the Advanced Photon Source (Beamlines 17BM (XRD)) at Argonne National Laboratory, which is a DOE Office of Science User Facility (DE-AC02-06CH11357).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Chen R and Xu W performed the experiments; Chen R, Xu W, Senanayake S, Rodriguez J, Chen J and Chen T contributed to data analysis and manuscript writing.

Corresponding authors

Correspondence to José A. Rodriguez or Tiehong Chen  (陈铁红).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Rui Chen received her PhD degree in materials physics and chemistry in 2014 from Nankai University. Currently, she is a research assistant at the School of Materials Science and Engineering, Nankai University. Her research interest focuses on the fabrication of porous metal oxides for applications in thermal- and photocatalytic reactions.

Tiehong Chen received his BSc and PhD degrees from Nankai University in 1990 and 1996, respectively. He joined Nankai University in 1996 and is currently a professor at the School of Materials Science and Engineering. His current research interests include the synthesis of zeolites and mesoporous materials, heterogeneous catalysis and electrocatalysis.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R., Xu, W., Senanayake, S.D. et al. Template-free fabrication of fractal porous Y2O3 monolithic foam and its functional modification by Ni-doping. Sci. China Mater. 63, 1842–1847 (2020). https://doi.org/10.1007/s40843-020-1317-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-020-1317-1

Navigation