Skip to main content
Log in

Syntheses, characterization and calculations of LimAnM6O15 (A=Rb, Cs; M=Si, Ge; m+n=6)

LimAnM6O15 (A=Rb, Cs; M=Si, Ge; m+n=6)的合成、 表征以及计算

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Alike phosphates, silicates and germanates exclusively containing tetrahedral basic building units (BBUs) can also exhibit ultraviolet (UV) even deep-UV transitions. They are important for the design of new UV or deep-UV nonlinear optical (NLO) materials. In this paper, four new alkali metal silicates and germanates, Li2Rb4Si6O15, Li2Cs4Si6O15, Li3Rb3Ge6O15 and Li3Cs3Ge6O15 were successfully synthesized by a high temperature solid state reaction. They obey the general formula of LimAnM6O15 (A=Rb, Cs; M=Si, Ge; m+n=6) and all exhibit the Sr2Be2B2O7 (SBBO)-like structures. More importantly, Li3Rb3Ge6O15 and Li3Cs3Ge6O15 crystallize in the noncentrosymmetric (NCS) structures and exhibit remarkable phase-matched second harmonic generation (SHG) effect, 0.8×KH2PO4 (KDP) and 1×KDP, respectively. These indicate that they are potential as UV or deep-UV NLO materials. Furthermore, their optical and NLO properties as well as thermal properties were measured. The structure-property relationships were studied by the dipole moment calculations and the first-principles calculations.

摘要

与磷酸盐类似, 含四面体基本结构基元的硅酸盐和锗酸盐也能表现出紫外甚至深紫外的透过, 因此, 它们对新型紫外或深紫外非线性光学材料的研究具有十分重要的意义. 本文采用高温固相法成功合成了4种新型碱金属硅酸盐和锗酸盐, 即Li2Rb4Si6O15, Li2Cs4Si6O15, Li3Rb3Ge6O15和Li3Cs3Ge6O15. 它们具有相同的结构通式LimAnM6O15 (A=Rb, Cs; M=Si, Ge; m+n=6), 且都表现出 Sr2Be2B2O7 (SBBO)类型的结构. 更重要的是, Li3Rb3Ge6O15和 Li3Cs3Ge6O15结晶于非中心对称(NCS)空间群, 表现出相对较大的二次谐波(SHG)效应(分别为0.8×KDP和1×KDP), 并且可以实现相位匹配. 这表明它们是潜在的紫外/深紫外非线性光学晶体材料. 此外, 我们也研究了它们的光学性能、 非线性光学性质以及热学性质. 通过偶极矩和第一性原理计算, 我们还详细分析了它们的结构-性能关系.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Becker P. Borate materials in nonlinear optics. Adv Mater, 1998, 10: 979–992

    CAS  Google Scholar 

  2. Halasyamani PS, Poeppelmeier KR. Noncentrosymmetric oxides. Chem Mater, 1998, 10: 2753–2769

    CAS  Google Scholar 

  3. Wu H, Pan S, Poeppelmeier KR, et al. K3B6O10Cl: A new structure analogous to perovskite with a large second harmonic generation response and deep UV absorption edge. J Am Chem Soc, 2011, 133: 7786–7790

    CAS  Google Scholar 

  4. Cyranoski D. Materials science: China’s crystal cache. Nature, 2009, 457: 953–955

    CAS  Google Scholar 

  5. Tran TT, Yu H, Rondinelli JM, et al. Deep ultraviolet nonlinear optical materials. Chem Mater, 2016, 28: 5238–5258

    CAS  Google Scholar 

  6. Zhang B, Shi G, Yang Z, et al. Fluorooxoborates: Beryllium-free deep-ultraviolet nonlinear optical materials without layered growth. Angew Chem Int Ed, 2017, 56: 3916–3919

    CAS  Google Scholar 

  7. Wang Y, Zhang B, Yang Z, et al. Cation-tuned synthesis of fluorooxoborates: Towards optimal deep-ultraviolet nonlinear optical materials. Angew Chem Int Ed, 2018, 57: 2150–2154

    CAS  Google Scholar 

  8. Wu H, Yu H, Yang Z, et al. Designing a deep-ultraviolet nonlinear optical material with a large second harmonic generation response. J Am Chem Soc, 2013, 135: 4215–4218

    CAS  Google Scholar 

  9. Shen Y, Zhao S, Yang Y, et al. A new KBBF-family nonlinear optical material with strong interlayer bonding. Cryst Growth Des, 2017, 17: 4422–4427

    CAS  Google Scholar 

  10. Zhou Z, Qiu Y, Liang F, et al. CsSiB3O7: A beryllium-free deep-ultraviolet nonlinear optical material discovered by the combination of electron diffraction and first-principles calculations. Chem Mater, 2018, 30: 2203–2207

    CAS  Google Scholar 

  11. Miao Z, Yang Y, Wei Z, et al. A new barium-containing alkali metal silicate fluoride NaBa3Si2O7F with deep-UV optical property. Sci China Mater, 2019, 62: 1454–1462

    CAS  Google Scholar 

  12. Yang Y, Gong P, Huang Q, et al. KNa4B2P3O13: A deep-ultraviolet transparent borophosphate exhibiting second-harmonic generation response. Inorg Chem, 2019, 58: 8918–8921

    CAS  Google Scholar 

  13. Mutailipu M, Zhang M, Zhang B, et al. SrB5O7F3 functionalized with [B5O9F3]6− chromophores: Accelerating the rational design of deep-ultraviolet nonlinear optical materials. Angew Chem Int Ed, 2018, 57: 6095–6099

    CAS  Google Scholar 

  14. Shi G, Wang Y, Zhang F, et al. Finding the next deep-ultraviolet nonlinear optical material: NH4B4O6F. J Am Chem Soc, 2017, 139: 10645–10648

    CAS  Google Scholar 

  15. Chen X, Zhang B, Zhang F, et al. Designing an excellent deep-ultraviolet birefringent material for light polarization. J Am Chem Soc, 2018, 140: 16311–16319

    CAS  Google Scholar 

  16. Chen CT, Wu BC, Jiang AD, et al. A new-type ultraviolet SHG crystal—β-BaB2O4. Sci Sin B, 1985, 28: 235–243

    Google Scholar 

  17. Chen C, Wu Y, Jiang A, et al. New nonlinear-optical crystal: LiB3O5. J Opt Soc Am B, 1989, 6: 616–621

    CAS  Google Scholar 

  18. Wu Y, Sasaki T, Nakai S, et al. CsB3O5: A new nonlinear optical crystal. Appl Phys Lett, 1993, 62: 2614–2615

    CAS  Google Scholar 

  19. Chen C, Wang Y, Xia Y, et al. New development of nonlinear optical crystals for the ultraviolet region with molecular engineering approach. J Appl Phys, 1995, 77: 2268–2272

    CAS  Google Scholar 

  20. Wang S, Ye N, Li W, et al. Alkaline beryllium borate NaBeB3O6 and ABe2B3O7 (A=K, Rb) as UV nonlinear optical crystals. J Am Chem Soc, 2010, 132: 8779–8786

    CAS  Google Scholar 

  21. Wang S, Ye N. Na2CsBe6B5O15: An alkaline beryllium borate as a deep-UV nonlinear optical crystal. J Am Chem Soc, 2011, 133: 11458–11461

    CAS  Google Scholar 

  22. Huang H, Liu L, Jin S, et al. Deep-ultraviolet nonlinear optical materials: Na2Be4B4O11 and LiNa5Be12B12O33. J Am Chem Soc, 2013, 135: 18319–18322

    CAS  Google Scholar 

  23. Luo M, Liang F, Song Y, et al. M2B10O14F6 (M=Ca, Sr): Two noncentrosymmetric alkaline earth fluorooxoborates as promising next-generation deep-ultraviolet nonlinear optical materials. J Am Chem Soc, 2018, 140: 3884–3887

    CAS  Google Scholar 

  24. Peng G, Ye N, Lin Z, et al. NH4Be2BO3F2 and γ-Be2BO3F: Overcoming the layering habit in KBe2BO3F2 for the next-generation deep-ultraviolet nonlinear optical materials. Angew Chem Int Ed, 2018, 57: 8968–8972

    CAS  Google Scholar 

  25. Wang X, Wang Y, Zhang B, et al. CsB4O6F: A congruent-melting deep-ultraviolet nonlinear optical material by combining superior functional units. Angew Chem, 2017, 129: 14307–14311

    Google Scholar 

  26. Yu H, Wu H, Pan S, et al. A novel deep UV nonlinear optical crystal Ba3B6O11F2, with a new fundamental building block, B6O14 group. J Mater Chem, 2012, 22: 9665

    CAS  Google Scholar 

  27. Yang Z, Lei BH, Zhang W, et al. Module-analysis-assisted design of deep ultraviolet fluorooxoborates with extremely large gap and high structural stability. Chem Mater, 2019, 31: 2807–2813

    CAS  Google Scholar 

  28. Chen C. Development of New Nonlinear Optical Crystals in The Borate Series. Reading: Harwood Academic Publishers, 1993. 74

    Google Scholar 

  29. Zhao S, Gong P, Luo S, et al. Tailored synthesis of a nonlinear optical phosphate with a short absorption edge. Angew Chem, 2015, 127: 4291–4295

    Google Scholar 

  30. Zhao S, Gong P, Luo S, et al. Deep-ultraviolet transparent phosphates RbBa2(PO3)5 and Rb2Ba3(P2O7)2 show nonlinear optical activity from condensation of [PO4]3- units. J Am Chem Soc, 2014, 136: 8560–8563

    CAS  Google Scholar 

  31. Zhao S, Yang X, Yang Y, et al. Non-centrosymmetric RbNaMgP2O7 with unprecedented thermo-induced enhancement of second harmonic generation. J Am Chem Soc, 2018, 140: 1592–1595

    CAS  Google Scholar 

  32. Yu H, Young J, Wu H, et al. M4Mg4(P2O7)3(M=K, Rb): Structural engineering of pyrophosphates for nonlinear optical applications. Chem Mater, 2017, 29: 1845–1855

    CAS  Google Scholar 

  33. Li L, Wang Y, Lei BH, et al. A new deep-ultraviolet transparent orthophosphate LiCs2PO4 with large second harmonic generation response. J Am Chem Soc, 2016, 138: 9101–9104

    CAS  Google Scholar 

  34. Chen X, Zhang F, Liu L, et al. Li3AlSiO5: The first aluminosilicate as a potential deep-ultraviolet nonlinear optical crystal with the quaternary diamond-like structure. Phys Chem Chem Phys, 2016, 18: 4362–4369

    CAS  Google Scholar 

  35. Zhao B, Yang Y, Zhao S, et al. A new phase-matchable nonlinear optical silicate: Rb2ZnSi3O8. J Mater Chem C, 2017, 5: 11025–11029

    CAS  Google Scholar 

  36. Zhao W, Zhang F, Liu J, et al. Flux crystal growth of Ba2TiOSi2O7. J Cryst Growth, 2015, 413: 46–50

    CAS  Google Scholar 

  37. Höche T, Neumann W, Esmaeilzadeh S, et al. The crystal structure of Sr2TiSi2O8. J Solid State Chem, 2002, 166: 15–23

    Google Scholar 

  38. Chao TL, Chang WJ, Wen SH, et al. Titanosilicates with strong phase-matched second harmonic generation responses. J Am Chem Soc, 2016, 138: 9061–9064

    CAS  Google Scholar 

  39. Xia M, Tang C, Li R. Rb4Li2TiOGe4O12: A titanyl nonlinear optical material with the widest transparency range. Angew Chem Int Ed, 2019, 58: 18257–18260

    CAS  Google Scholar 

  40. Xu J, Wu H, Yu H, et al. Li2K4TiOGe4O12: A stable mid-infrared nonlinear optical material. Chem Mater, 2020, 32: 906–912

    CAS  Google Scholar 

  41. Becker P, Held P, Liebertz J, et al. Optical properties of the germanate melilites Sr2MgGe2O7, Sr2ZnGe2O7 and Ba2ZnGe2O7. Cryst Res Technol, 2009, 44: 603–612

    CAS  Google Scholar 

  42. Kaminskii AA, Bohatý L, Becker P, et al. Tetragonal Ba2MgGe2O7-a novel multifunctional optical crystal with numerous manifestations of nonlinear-laser effects: Almost sesqui-octave Stokes and anti-Stokes combs and cascaded χ(3)χ(2) lasing with involved second and third harmonic generation. Laser Phys Lett, 2008, 5: 845–868

    CAS  Google Scholar 

  43. Jia Z, Jiang X, Lin Z, et al. PbTeGeO6: Polar rosiaite-type germanate featuring a two dimensional layered structure. Dalton Trans, 2018, 47: 16388–16392

    CAS  Google Scholar 

  44. Tang RL, Hu CL, Wu BL, et al. Cs2Bi2O(Ge2O7) (CBGO): A larger SHG effect induced by synergistic polarizations of BiO5 polyhedra and GeO4 tetrahedra. Angew Chem Int Ed, 2019, 58: 15358–15361

    CAS  Google Scholar 

  45. Bruker. Program SAINT. Madison: Bruker AXS Inc., 2012

    Google Scholar 

  46. Sheldrick GM. A short history of SHELX. Acta Crystallogr A, 2008, 64: 112

    CAS  Google Scholar 

  47. Kurtz SK, Perry TT. A powder technique for the evaluation of nonlinear optical materials. J Appl Phys, 1968, 39: 3798–3813

    CAS  Google Scholar 

  48. Clark SJ, Segall MD, Pickard CJ, et al. First principles methods using CASTEP. Z für Kristallographie-Crystline Mater, 2005, 220: 567–570

    CAS  Google Scholar 

  49. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865–3868

    CAS  Google Scholar 

  50. Rappe AM, Rabe KM, Kaxiras E, et al. Optimized pseudopotentials. Phys Rev B, 1990, 41: 1227–1230

    CAS  Google Scholar 

  51. Lin JS, Qteish A, Payne MC, et al. Optimized and transferable nonlocal separable ab initio pseudopotentials. Phys Rev B, 1993, 47: 4174–4180

    CAS  Google Scholar 

  52. Tang RL, Hu CL, Mao FF, et al. Ba4Bi2(Si8−xB4+xO29) (x=0.09): A new acentric metal borosilicate as a promising nonlinear optical material. Chem Sci, 2019, 10: 837–842

    CAS  Google Scholar 

  53. Wen M, Lian Z, Wu H, et al. Ba7(BO3)3GeO4X (X=Cl, Br): Borogermanate halides with rigid GeO4 tetrahedra and flexible XBa6 octahedra. RSC Adv, 2015, 5: 53448–53454

    CAS  Google Scholar 

  54. Zhen N, Wu K, Li Q, et al. Synthesis, structures, and properties of two magnesium silicate fluorides Mg5(SiO4)2F2 and Mg3SiO4F2. New J Chem, 2015, 39: 8866–8873

    CAS  Google Scholar 

  55. Yu P, Wu LM, Zhou LJ, et al. Deep-ultraviolet nonlinear optical crystals: Ba3P3O10X (X=Cl, Br). J Am Chem Soc, 2014, 136: 480–487

    CAS  Google Scholar 

  56. Eckardt RC, Byer RL, Masuda H, et al. Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO-LiNbO3, and KTP measured by phase-matched secondharmonic generation. IEEE J Quantum Electron, 1990, 26: 922–933

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Tianjin (19JCZDJC38200), the National Natural Science Foundation of China (51802217, 51972230, 61835014, 51890864 and 51890865), and the National Key R&D Program of China (2016YFB0402103).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Xu J performed the experiments, data analysis, and paper writing; Wu H, Yu H, Hu Z, Wang J and Wu Y designed the concept and supervised the experiments. All authors contributed to the general discussion.

Corresponding author

Correspondence to Hongwei Yu  (俞洪伟).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Jingjing Xu received her BSc degree in applied physics from Tianjin University of Commerce in 2018. She is currently a master student in Professor Hongwei Yu’s research group at Tianjin University of Technology. Her research focuses on the syntheses, crystal growth, and evaluation of new optical electronic functional materials.

Hongwei Yu received his PhD degree in material physics and chemistry from the University of Chinese Academy of Sciences. He did post-doctoral research at Houston University and Northwestern University in USA from 2014 to 2017. From 2018, he has been working as a full professor at Tianjin University of Technology. His current research interests include the design, syntheses, crystal growth, and evaluation of new optical electronic functional materials.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Wu, H., Yu, H. et al. Syntheses, characterization and calculations of LimAnM6O15 (A=Rb, Cs; M=Si, Ge; m+n=6). Sci. China Mater. 63, 1769–1778 (2020). https://doi.org/10.1007/s40843-020-1310-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-020-1310-1

Keywords

Navigation