Skip to main content
Log in

Optical property and lasing of GaAs-based nanowires

GaAs基纳米线的光学性质和激射

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

GaAs-based nanowire (NW) lasers working in the infrared region is critical in integrated optoelectronics. In the past few decades, the field of NW lasers has developed rapidly. Compared with materials working in the ultraviolet and visible ranges, GaAs-based infrared NW lasers, however, are more difficult to achieve because of their specific properties. In this review, we focus on the recent developments of GaAs-based NWs, more especially, the optical property and lasing of GaAs-based NWs. The growth mechanism of GaAs NWs is introduced in detail, including the crystal phase control and the growth of complex structures. Subsequently, the influence and improvement of the optical properties of GaAs-based NWs are introduced and discussed. Finally, the design and latest progress of GaAs-based NW lasers are put forward.

摘要

工作在红外波段的砷化镓(GaAs)基纳米线激光器在集成光电子学中起着重要作用. 在过去的十几年中, 纳米线激光器领域发展迅速, 但是与工作在紫外和可见波段的材料相比, 由于GaAs基材料的特性, 近红外激光器的实现相对困难. 在本文中, 我们着重介绍了GaAs基纳米线的最新进展, 特别是GaAs纳米线的光学性质和激射特性. 详细介绍了GaAs纳米线的生长机理, 包括晶相控制和复杂结构的生长.回顾并讨论了GaAs基纳米线的光学性质的影响因素和改进方法. 最后, 展示了GaAs基纳米线激光器的设计及其最新 进展.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Koblmüller G, Mayer B, Stettner T, et al. GaAs-AlGaAs coreshell nanowire lasers on silicon: invited review. Semicond Sci Technol, 2017, 32: 053001

    Google Scholar 

  2. Thomson D, Zilkie A, Bowers JE, et al. Roadmap on silicon photonics. J Opt, 2016, 18: 073003

    Google Scholar 

  3. Maiman TH. Stimulated optical radiation in ruby. Nature, 1960, 1: 493–494

    Google Scholar 

  4. Huang MH, Mao S, Feick H, et al. Room-temperature ultraviolet nanowire nanolasers. Science, 2001, 1: 1897–1899

    Google Scholar 

  5. Johnson JC, Choi HJ, Knutsen KP, et al. Single gallium nitride nanowire lasers. Nat Mater, 2002, 1: 106–110

    CAS  Google Scholar 

  6. Agarwal R, Barrelet CJ, Lieber CM. Lasing in single cadmium sulfide nanowire optical cavities. Nano Lett, 2005, 1: 917–920

    Google Scholar 

  7. Xing G, Luo J, Li H, et al. Ultrafast exciton dynamics and two-photon pumped lasing from ZnSe nanowires. Adv Opt Mater, 2013, 1: 319–326

    Google Scholar 

  8. Saxena D, Mokkapati S, Parkinson P, et al. Optically pumped room-temperature GaAs nanowire lasers. Nat Photon, 2013, 1: 963–968

    Google Scholar 

  9. Mayer B, Rudolph D, Schnell J, et al. Lasing from individual GaAs-AlGaAs core-shell nanowires up to room temperature. Nat Commun, 2013, 4: 2931

    Google Scholar 

  10. Hua B, Motohisa J, Kobayashi Y, et al. Single GaAs/GaAsP coaxial core-shell nanowire lasers. Nano Lett, 2009, 1: 112–116

    Google Scholar 

  11. Chin AH, Vaddiraju S, Maslov AV, et al. Near-infrared semiconductor subwavelength-wire lasers. Appl Phys Lett, 2006, 88: 163115

    Google Scholar 

  12. Gao Q, Saxena D, Wang F, et al. Selective-area epitaxy of pure wurtzite InP nanowires: high quantum efficiency and room-temperature lasing. Nano Lett, 2014, 1: 5206–5211

    Google Scholar 

  13. Maslov AV, Ning CZ. Reflection of guided modes in a semiconductor nanowire laser. Appl Phys Lett, 2003, 1: 1237–1239

    Google Scholar 

  14. Röder R, Ronning C. Review on the dynamics of semiconductor nanowire lasers. Semicond Sci Technol, 2018, 33: 033001

    Google Scholar 

  15. Eaton SW, Fu A, Wong AB, et al. Semiconductor nanowire lasers. Nat Rev Mater, 2016, 1: 16028

    CAS  Google Scholar 

  16. Hill MT, Gather MC. Advances in small lasers. Nat Photon, 2014, 1: 908–918

    Google Scholar 

  17. Zhang Y, Saxena D, Aagesen M, et al. Toward electrically driven semiconductor nanowire lasers. Nanotechnology, 2019, 30: 192002

    CAS  Google Scholar 

  18. Couteau C, Larrue A, Wilhelm C, et al. Nanowire lasers. Nano-photonics, 2015, 1: 90–107

    Google Scholar 

  19. Yang P, Yan R, Fardy M. Semiconductor nanowire: What’s next? Nano Lett, 2010, 1: 1529–1536

    Google Scholar 

  20. Quan LN, Kang J, Ning CZ, et al. Nanowires for photonics. Chem Rev, 2019, 1: 9153–9169

    Google Scholar 

  21. Ning CZ. Semiconductor nanowire lasers. Semiconduct Semimet. 2012, 1: 455–486

    Google Scholar 

  22. Dasgupta NP, Sun J, Liu C, et al. 25th anniversary article: Semiconductor nanowires—Synthesis, characterization, and applications. Adv Mater, 2014, 1: 2137–2184

    Google Scholar 

  23. Güniat L, Caroff P, Fontcuberta i Morral A. Vapor phase growth of semiconductor nanowires: key developments and open questions. Chem Rev, 2019, 1: 8958–8971

    Google Scholar 

  24. Fortuna SA, Li X. Metal-catalyzed semiconductor nanowires: a review on the control of growth directions. Semicond Sci Technol, 2010, 25: 024005

    Google Scholar 

  25. Lu W, Lieber CM. Semiconductor nanowires. J Phys D-Appl Phys, 2006, 39: R387–R406

    CAS  Google Scholar 

  26. Fan HJ, Werner P, Zacharias M. Semiconductor nanowires: From self-organization to patterned growth. Small, 2006, 1: 700–717

    Google Scholar 

  27. Barrigón E, Heurlin M, Bi Z, et al. Synthesis and applications of III–V nanowires. Chem Rev, 2019, 1: 9170–9220

    Google Scholar 

  28. Li A, Zou J, Han X. Growth of III-V semiconductor nanowires and their heterostructures. Sci China Mater, 2016, 1: 51–91

    Google Scholar 

  29. Morral AF. Gold-free GaAs nanowire synthesis and optical properties. IEEE J Sel Top Quantum Electron, 2011, 1: 819–828

    Google Scholar 

  30. Wagner RS, Ellis WC. Vapor-liquid-solid mechanism of single crystal growth. Appl Phys Lett, 1964, 1: 89–90

    Google Scholar 

  31. Rudolph D, Hertenberger S, Bolte S, et al. Direct observation of a noncatalytic growth regime for GaAs nanowires. Nano Lett, 2011, 1: 3848–3854

    Google Scholar 

  32. Fontcuberta i Morral A, Colombo C, Abstreiter G, et al. Nucleation mechanism of gallium-assisted molecular beam epitaxy growth of gallium arsenide nanowires. Appl Phys Lett, 2008, 92: 063112

    Google Scholar 

  33. Duan X, Wang J, Lieber CM. Synthesis and optical properties of gallium arsenide nanowires. Appl Phys Lett, 2000, 1: 1116–1118

    Google Scholar 

  34. Breuer S, Pfuller C, Flissikowski T, et al. Suitability of Au- and self-assisted GaAs nanowires for optoelectronic applications. Nano Lett, 2011, 1: 1276–1279

    Google Scholar 

  35. Spirkoska D, Arbiol J, Gustafsson A, et al. Structural and optical properties of high quality zinc-blende/wurtzite GaAs nanowire heterostructures. Phys Rev B, 2009, 80: 245325

    Google Scholar 

  36. Glas F, Harmand JC, Patriarche G. Why does wurtzite form in nanowires of III-V zinc blende semiconductors? Phys Rev Lett, 2007, 99: 146101

    Google Scholar 

  37. Dubrovskii VG, Sibirev NV, Harmand JC, et al. Growth kinetics and crystal structure of semiconductor nanowires. Phys Rev B, 2008, 78: 235301

    Google Scholar 

  38. Dubrovskii VG. Influence of the group V element on the chemical potential and crystal structure of Au-catalyzed III-V nanowires. Appl Phys Lett, 2014, 104: 053110

    Google Scholar 

  39. Dubrovskii VG. Mono- and polynucleation, atomistic growth, and crystal phase of III-V nanowires under varying group V flow. J Chem Phys, 2015, 142: 204702

    CAS  Google Scholar 

  40. Matteini F, Tütüncüoglu G, Mikulik D, et al. Impact of the Ga droplet wetting, morphology, and pinholes on the orientation of GaAs nanowires. Cryst Growth Des, 2016, 5781–5786

  41. Tersoff J. Stable self-catalyzed growth of III-V nanowires. Nano Lett, 2015, 1: 6609–6613

    Google Scholar 

  42. Dubrovskii VG. Refinement of nucleation theory for vapor-liquid-solid nanowires. Cryst Growth Des, 2017, 1: 2589–2593

    Google Scholar 

  43. Mårtensson EK, Lehmann S, Dick KA, et al. Simulation of GaAs nanowire growth and crystal structure. Nano Lett, 2019, 1: 1197–1203

    Google Scholar 

  44. Lehmann S, Wallentin J, Jacobsson D, et al. A general approach for sharp crystal phase switching in InAs, GaAs, InP, and GaP nanowires using only group V flow. Nano Lett, 2013, 1: 4099–4105

    Google Scholar 

  45. Joyce HJ, Wong-Leung J, Gao Q, et al. Phase perfection in zinc blende and wurtzite III–V nanowires using basic growth parameters. Nano Lett, 2010, 1: 908–915

    Google Scholar 

  46. Krogstrup P, Popovitz-Biro R, Johnson E, et al. Structural phase control in self-catalyzed growth of GaAs nanowires on silicon (111). Nano Lett, 2010, 1: 4475–4482

    Google Scholar 

  47. Kim W, Dubrovskii VG, Vukajlovic-Plestina J, et al. Bistability of contact angle and its role in achieving quantum-thin self-assisted GaAs nanowires. Nano Lett, 2018, 1: 49–57

    Google Scholar 

  48. Maliakkal CB, Jacobsson D, Tornberg M, et al. In situ analysis of catalyst composition during gold catalyzed GaAs nanowire growth. Nat Commun, 2019, 10: 4577

    CAS  Google Scholar 

  49. Schroth P, Al Humaidi M, Feigl L, et al. Impact of the shadowing effect on the crystal structure of patterned self-catalyzed GaAs nanowires. Nano Lett, 2019, 1: 4263–4271

    Google Scholar 

  50. de la Mata M, Magén C, Caroff P, et al. Atomic scale strain relaxation in axial semiconductor III-V nanowire hetero-structures. Nano Lett, 2014, 1: 6614–6620

    Google Scholar 

  51. Zhou C, Zheng K, Chen PP, et al. Crystal-phase control of GaAs-GaAsSb core-shell/axial nanowire heterostructures by a two-step growth method. J Mater Chem C, 2018, 1: 6726–6732

    Google Scholar 

  52. Joyce HJ, Gao Q, Tan HH, et al. Twin-free uniform epitaxial GaAs nanowires grown by a two-temperature process. Nano Lett, 2007, 1: 921–926

    Google Scholar 

  53. Haraguchi K, Katsuyama T, Hiruma K, et al. GaAs p-n junction formed in quantum wire crystals. Appl Phys Lett, 1992, 1: 745–747

    Google Scholar 

  54. Alanis JA, Lysevych M, Burgess T, et al. Optical study of p-doping in GaAs nanowires for low-threshold and high-yield lasing. Nano Lett, 2019, 1: 362–368

    Google Scholar 

  55. Isik Goktas N, Fiordaliso EM, LaPierre RR. Doping assessment in GaAs nanowires. Nanotechnology, 2018, 29: 234001

    Google Scholar 

  56. Burgess T, Saxena D, Mokkapati S, et al. Doping-enhanced radiative efficiency enables lasing in unpassivated GaAs nanowires. Nat Commun, 2016, 7: 11927

    CAS  Google Scholar 

  57. Sager D, Gutsche C, Prost W, et al. Recombination dynamics in single GaAs-nanowires with an axial heterojunction: n-versus p-doped areas. J Appl Phys, 2013, 113: 174303

    Google Scholar 

  58. Zhang Y, Sun Z, Sanchez AM, et al. Doping of self-catalyzed nanowires under the influence of droplets. Nano Lett, 2018, 1: 81–87

    Google Scholar 

  59. Dastjerdi MHT, Fiordaliso EM, Leshchenko ED, et al. Three-fold symmetric doping mechanism in GaAs nanowires. Nano Lett, 2017, 1: 5875–5882

    Google Scholar 

  60. Czaban JA, Thompson DA, LaPierre RR. GaAs core-shell nano-wires for photovoltaic applications. Nano Lett, 2009, 1: 148–154

    Google Scholar 

  61. Boland JL, Casadei A, Tütüncüoglu G, et al. Increased photo-conductivity lifetime in GaAs nanowires by controlled n-type and p-type doping. ACS Nano, 2016, 1: 4219–4227

    Google Scholar 

  62. Boland JL, Conesa-Boj S, Parkinson P, et al. Modulation doping of GaAs/AlGaAs core-shell nanowires with effective defect passivation and high electron mobility. Nano Lett, 2015, 1: 1336–1342

    Google Scholar 

  63. Chen X, Wang D, Wang T, et al. Enhanced photoresponsivity of a GaAs nanowire metal-semiconductor-metal photodetector by adjusting the fermi level. ACS Appl Mater Interfaces, 2019, 1: 33188–33193

    Google Scholar 

  64. Ali H, Zhang Y, Tang J, et al. High-responsivity photodetection by a self-catalyzed phase-pure p-GaAs nanowire. Small, 2018, 14: 1704429

    Google Scholar 

  65. Stettner T, Zimmermann P, Loitsch B, et al. Coaxial GaAs-AlGaAs core-multishell nanowire lasers with epitaxial gain control. Appl Phys Lett, 2016, 108: 011108

    Google Scholar 

  66. Zhang Y, Davis G, Fonseka HA, et al. Highly strained III-V-V coaxial nanowire quantum wells with strong carrier confinement. ACS Nano, 2019, 1: 5931–5938

    Google Scholar 

  67. Stettner T, Thurn A, Döblinger M, et al. Tuning lasing emission toward long wavelengths in GaAs-(In,Al)GaAs core-multishell nanowires. Nano Lett, 2018, 1: 6292–6300

    Google Scholar 

  68. Yuan X, Saxena D, Caroff P, et al. Strong amplified spontaneous emission from high quality GaAs1−xSbx single quantum well nanowires. J Phys Chem C, 2017, 1: 8636–8644

    Google Scholar 

  69. Yan X, Wei W, Tang F, et al. Low-threshold room-temperature AlGaAs/GaAs nanowire/single-quantum-well heterostructure laser. Appl Phys Lett, 2017, 110: 061104

    Google Scholar 

  70. Schuster F, Kapraun J, Malheiros-Silveira GN, et al. Site-controlled growth of monolithic InGaAs/InP quantum well nano-pillar lasers on silicon. Nano Lett, 2017, 1: 2697–2702

    Google Scholar 

  71. Lu F, Bhattacharya I, Sun H, et al. Nanopillar quantum well lasers directly grown on silicon and emitting at silicon-transparent wavelengths. Optica, 2017, 1: 717–723

    Google Scholar 

  72. Alanis JA, Saxena D, Mokkapati S, et al. Large-scale statistics for threshold optimization of optically pumped nanowire lasers. Nano Lett, 2017, 1: 4860–4865

    Google Scholar 

  73. Saxena D, Jiang N, Yuan X, et al. Design and room-temperature operation of GaAs/AlGaAs multiple quantum well nanowire lasers. Nano Lett, 2016, 1: 5080–5086

    Google Scholar 

  74. Zhou C, Zhang XT, Zheng K, et al. Epitaxial GaAs/AlGaAs core-multishell nanowires with enhanced photoluminescence lifetime. Nanoscale, 2019, 1: 6859–6865

    Google Scholar 

  75. Zhang J, Tang J, Kang Y, et al. Structural and spectroscopy characterization of coaxial GaAs/GaAsSb/GaAs single quantum well nanowires fabricated by molecular beam epitaxy. Cryst-EngComm, 2019, 1: 4150–4157

    Google Scholar 

  76. Li H, Tang J, Pang G, et al. Optical characteristics of GaAs/GaAsSb/GaAs coaxial single quantum-well nanowires with different Sb components. RSC Adv, 2019, 1: 38114–38118

    Google Scholar 

  77. Li H, Tang J, Kang Y, et al. Optical properties of quasi-type-II structure in GaAs/GaAsSb/GaAs coaxial single quantum-well nanowires. Appl Phys Lett, 2018, 113: 233104

    Google Scholar 

  78. Rudolph D, Funk S, Döblinger M, et al. Spontaneous alloy composition ordering in GaAs-AlGaAs core-shell nanowires. Nano Lett, 2013, 1: 1522–1527

    Google Scholar 

  79. Fickenscher M, Shi T, Jackson HE, et al. Optical, structural, and numerical investigations of GaAs/AlGaAs core-multishell nano-wire quantum well tubes. Nano Lett, 2013, 1: 1016–1022

    Google Scholar 

  80. Gudiksen MS, Lauhon LJ, Wang J, et al. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature, 2002, 1: 617–620

    Google Scholar 

  81. Wu J, Ramsay A, Sanchez A, et al. Defect-free self-catalyzed GaAs/GaAsP nanowire quantum dots grown on silicon substrate. Nano Lett, 2016, 1: 504–511

    Google Scholar 

  82. Tatebayashi J, Ota Y, Ishida S, et al. Highly uniform, multi-stacked InGaAs/GaAs quantum dots embedded in a GaAs nanowire. Appl Phys Lett, 2014, 105: 103104

    Google Scholar 

  83. Tatebayashi J, Ota Y, Ishida S, et al. Formation and optical properties of multi-stack InGaAs quantum dots embedded in GaAs nanowires by selective metalorganic chemical vapor deposition. J Cryst Growth, 2013, 1: 299–302

    Google Scholar 

  84. Tatebayashi J, Ota Y, Ishida S, et al. Site-controlled formation of InAs/GaAs quantum-dot-in-nanowires for single photon emitters. Appl Phys Lett, 2012, 100: 263101

    Google Scholar 

  85. Borgström MT, Zwiller V, Müller E, et al. Optically bright quantum dots in single nanowires. Nano Lett, 2005, 1: 1439–1443

    Google Scholar 

  86. Ren D, Ahtapodov L, Nilsen JS, et al. Single-mode near-infrared lasing in a GaAsSb-based nanowire superlattice at room temperature. Nano Lett, 2018, 1: 2304–2310

    Google Scholar 

  87. Ho J, Tatebayashi J, Sergent S, et al. A nanowire-based plasmonic quantum dot laser. Nano Lett, 2016, 1: 2845–2850

    Google Scholar 

  88. Tatebayashi J, Kako S, Ho J, et al. Room-temperature lasing in a single nanowire with quantum dots. Nat Photon, 2015, 1: 501–505

    Google Scholar 

  89. Heiss M, Fontana Y, Gustafsson A, et al. Self-assembled quantum dots in a nanowire system for quantum photonics. Nat Mater, 2013, 1: 439–444

    Google Scholar 

  90. Sköld N, Wagner JB, Karlsson G, et al. Phase segregation in AlInP shells on GaAs nanowires. Nano Lett, 2006, 1: 2743–2747

    Google Scholar 

  91. Biasiol G, Gustafsson A, Leifer K, et al. Mechanisms of self-ordering in nonplanar epitaxy of semiconductor nanostructures. Phys Rev B, 2002, 65: 205306

    Google Scholar 

  92. Heinrich J, Huggenberger A, Heindel T, et al. Single photon emission from positioned GaAs/AlGaAs photonic nanowires. Appl Phys Lett, 2010, 96: 211117

    Google Scholar 

  93. Panev N, Persson AI, Sköld N, et al. Sharp exciton emission from single InAs quantum dots in GaAs nanowires. Appl Phys Lett, 2003, 1: 2238–2240

    Google Scholar 

  94. Lautenschlager P, Garriga M, Logothetidis S, et al. Interband critical points of GaAs and their temperature dependence. Phys Rev B, 1987, 1: 9174–9189

    Google Scholar 

  95. Graham AM, Corfdir P, Heiss M, et al. Exciton localization mechanisms in wurtzite/zinc-blende GaAs nanowires. Phys Rev B, 2013, 87: 125304

    Google Scholar 

  96. Jiang N, Parkinson P, Gao Q, et al. Long minority carrier lifetime in Au-catalyzed GaAs/AlxGa1-xAs core-shell nanowires. Appl Phys Lett, 2012, 101: 023111

    Google Scholar 

  97. Demichel O, Heiss M, Bleuse J, et al. Impact of surfaces on the optical properties of GaAs nanowires. Appl Phys Lett, 2010, 97: 201907

    Google Scholar 

  98. Skromme BJ, Sandroff CJ, Yablonovitch E, et al. Effects of passivating ionic films on the photoluminescence properties of GaAs. Appl Phys Lett, 1987, 1: 2022–2024

    Google Scholar 

  99. Sandroff CJ, Nottenburg RN, Bischoff JC, et al. Dramatic enhancement in the gain of a GaAs/AlGaAs heterostructure bipolar transistor by surface chemical passivation. Appl Phys Lett, 1987, 1: 33–35

    Google Scholar 

  100. Tajik N, Peng Z, Kuyanov P, et al. Sulfur passivation and contact methods for GaAs nanowire solar cells. Nanotechnology, 2011, 22: 225402

    CAS  Google Scholar 

  101. Chen X, Xia N, Yang Z, et al. Analysis of the influence and mechanism of sulfur passivation on the dark current of a single GaAs nanowire photodetector. Nanotechnology, 2018, 29: 095201

    Google Scholar 

  102. Tajik N, Chia ACE, LaPierre RR. Improved conductivity and long-term stability of sulfur-passivated n-GaAs nanowires. Appl Phys Lett, 2012, 100: 203122

    Google Scholar 

  103. Lin A, Shapiro JN, Senanayake PN, et al. Extracting transport parameters in GaAs nanopillars grown by selective-area epitaxy. Nanotechnology, 2012, 23: 105701

    Google Scholar 

  104. Yu TH, Yan L, You W, et al. The effect of passivation on different GaAs surfaces. Appl Phys Lett, 2013, 103: 173902

    Google Scholar 

  105. Alekseev PA, Dunaevskiy MS, Ulin VP, et al. Nitride surface passivation of GaAs nanowires: impact on surface state density. Nano Lett, 2015, 1: 63–68

    Google Scholar 

  106. Joyce HJ, Parkinson P, Jiang N, et al. Electron mobilities approaching bulk limits in “surface-free” GaAs nanowires. Nano Lett, 2014, 1: 5989–5994

    Google Scholar 

  107. Jiang N, Gao Q, Parkinson P, et al. Enhanced minority carrier lifetimes in GaAs/AlGaAs core-shell nanowires through shell growth optimization. Nano Lett, 2013, 1: 5135–5140

    Google Scholar 

  108. Perera S, Fickenscher MA, Jackson HE, et al. Nearly intrinsic exciton lifetimes in single twin-free GaAs/AlGaAs core-shell nanowire heterostructures. Appl Phys Lett, 2008, 93: 053110

    Google Scholar 

  109. Tateno K, Gotoh H, Watanabe Y. GaAs/AlGaAs nanowires capped with AlGaAs layers on GaAs(311)B substrates. Appl Phys Lett, 2004, 1: 1808–1810

    Google Scholar 

  110. Mayer B, Janker L, Rudolph D, et al. Continuous wave lasing from individual GaAs-AlGaAs core-shell nanowires. Appl Phys Lett, 2016, 108: 071107

    Google Scholar 

  111. Ho J, Tatebayashi J, Sergent S, et al. Low-threshold near-infrared GaAs-AlGaAs core-shell nanowire plasmon laser. ACS Photonics, 2015, 1: 165–171

    Google Scholar 

  112. Wei W, Liu Y, Zhang X, et al. Evanescent-wave pumped room-temperature single-mode GaAs/AlGaAs core-shell nanowire lasers. Appl Phys Lett, 2014, 104: 223103

    Google Scholar 

  113. Chang CC, Chi CY, Yao M, et al. Electrical and optical characterization of surface passivation in GaAs nanowires. Nano Lett, 2012, 1: 4484–4489

    Google Scholar 

  114. Sköld N, Karlsson LS, Larsson MW, et al. Growth and optical properties of strained GaAs-GaxIn1−xP core-shell nanowires. Nano Lett, 2005, 1: 1943–1947

    Google Scholar 

  115. Chia ACE, Tirado M, Li Y, et al. Electrical transport and optical model of GaAs-AlInP core-shell nanowires. J Appl Phys, 2012, 111: 094319

    Google Scholar 

  116. Chen S, Jansson M, Stehr JE, et al. Dilute nitride nanowire lasers based on a GaAs/GaNAs core/shell structure. Nano Lett, 2017, 1: 1775–1781

    Google Scholar 

  117. Mårtensson T, Svensson CPT, Wacaser BA, et al. Epitaxial III-V nanowires on silicon. Nano Lett, 2004, 1: 1987–1990

    Google Scholar 

  118. Chen R, Tran TTD, Ng KW, et al. Nanolasers grown on silicon. Nat Photon, 2011, 1: 170–175

    Google Scholar 

  119. Li L, Pan D, Xue Y, et al. Near full-composition-range high-quality GaAs1−xSbx nanowires grown by molecular-beam epitaxy. Nano Lett, 2017, 1: 622–630

    Google Scholar 

  120. Gerlach B, Wüsthoff J, Dzero MO, et al. Exciton binding energy in a quantum well. Phys Rev B, 1998, 1: 10568–10577

    Google Scholar 

  121. Bastard G, Mendez EE, Chang LL, et al. Exciton binding energy in quantum wells. Phys Rev B, 1982, 1: 1974–1979

    Google Scholar 

  122. Mayer B, Janker L, Loitsch B, et al. Monolithically integrated high-β nanowire lasers on silicon. Nano Lett, 2016, 1: 152–156

    Google Scholar 

  123. Hua B, Motohisa J, Ding Y, et al. Characterization of Fabry-Pérot microcavity modes in GaAs nanowires fabricated by selective-area metal organic vapor phase epitaxy. Appl Phys Lett, 2007, 91: 131112

    Google Scholar 

  124. Scofield AC, Kim SH, Shapiro JN, et al. Bottom-up photonic crystal lasers. Nano Lett, 2011, 1: 5387–5390

    Google Scholar 

  125. Gao H, Fu A, Andrews SC, et al. Cleaved-coupled nanowire lasers. Proc Natl Acad Sci USA, 2013, 1: 865–869

    Google Scholar 

  126. Wright JB, Campione S, Liu S, et al. Distributed feedback gallium nitride nanowire lasers. Appl Phys Lett, 2014, 104: 041107

    Google Scholar 

  127. Xiao Y, Meng C, Wu X, et al. Single mode lasing in coupled nanowires. Appl Phys Lett, 2011, 99: 023109

    Google Scholar 

  128. Chen R, Bakti Utama MI, Peng Z, et al. Excitonic properties and near-infrared coherent random lasing in vertically aligned CdSe nanowires. Adv Mater, 2011, 1: 1404–1408

    Google Scholar 

  129. Chen R, Ye QL, He T, et al. Exciton localization and optical properties improvement in nanocrystal-embedded ZnO core-shell nanowires. Nano Lett, 2013, 1: 734–739

    Google Scholar 

  130. Li H, Tang J, Lin F, et al. Improved optical property and lasing of ZnO nanowires by Ar plasma treatment. Nanoscale Res Lett, 2019, 14: 312

    Google Scholar 

  131. Sun H, Ren F, Ng KW, et al. Nanopillar lasers directly grown on silicon with heterostructure surface passivation. ACS Nano, 2014, 1: 6833–6839

    Google Scholar 

  132. Bermúdez-Ureña E, Tutuncuoglu G, Cuerda J, et al. Plasmonic waveguide-integrated nanowire laser. Nano Lett, 2017, 1: 747–754

    Google Scholar 

  133. Ha ST, Fu YH, Emani NK, et al. Directional lasing in resonant semiconductor nanoantenna arrays. Nat Nanotech, 2018, 1: 1042–1047

    Google Scholar 

  134. Valente J, Godde T, Zhang Y, et al. Light-emitting GaAs nano-wires on a flexible substrate. Nano Lett, 2018, 1: 4206–4213

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61574022, 61674021, 61704011, 61904017, 111674038, 1404219, and 11574130), the Foundation of NANO X (No. 18JG01). Chen R acknowledges the funding support from Shenzhen Science and Technology Innovation Commission (JCYJ20180305180553701, KQJSCX20170726145748, and KQTD2015071710313656).

Author information

Authors and Affiliations

Authors

Contributions

This paper was written with contributions from all authors. All authors have given approval to the final version of the paper.

Corresponding authors

Correspondence to Zhipeng Wei  (魏志鹏) or Rui Chen  (陈锐).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Haolin Li received his BE degree in electronic science and technology from Changchun University of Science and Technology in 2016. He is currently pursuing a PhD degree in electronic science and technology under the supervision of Prof. Zhipeng Wei at Changchun University of Science and Technology. His current interests include the optical properties of semiconductor nanomaterials and their applications.

Yuting Chen is currently pursuing a BE degree in optoelectronic information science and engineering under the supervision of Prof. Rui Chen at Southern University of Science and Technology. Her current interest focuses on ul-trafast carrier dynamics.

Zhipeng Wei received his PhD degree in condensed matter physics from Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences. He is currently working at the State Key Laboratory of High Power Semiconductor Laser in Changchun University of Science and Technology. His research interests include the optoelectronic properties of low dimensional semiconductors and their applications.

Rui Chen received his PhD degree in applied physics from Nanyang Technological University, and physics from Xiamen University. He is currently working at the Department of Electrical and Electronic Engineering at Southern University of Science and Technology. His research interests include the laser spectroscopy, optical properties of materials, optical microcavity and micro/nano lasers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Chen, Y., Wei, Z. et al. Optical property and lasing of GaAs-based nanowires. Sci. China Mater. 63, 1364–1381 (2020). https://doi.org/10.1007/s40843-020-1288-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-020-1288-6

Keywords

Navigation