Skip to main content
Log in

Safety regulation of gel electrolytes in electrochemical energy storage devices

凝胶电解质对电化学储能装置的安全调控

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Electrochemical energy storage devices, such as lithium ion batteries (LIBs), supercapacitors and fuel cells, have been vigorously developed and widely researched in past decades. However, their safety issues have appealed immense attention. Gel electrolytes (GEs), with a special state in-between liquid and solid electrolytes, are considered as the most promising candidates in electrochemical energy storage because of their high safety and stability. This review summarized the recent progresses made in the application of GEs in the safety regulation of the electrochemical energy storage devices. Special attention was paid to the gel polymer electrolytes, the organic low molecule-mass GEs, as well as the fumed silica-based and siloxane-based GEs. Finally, the current challenges and future directions were proposed in terms of the development of GEs.

摘要

近几十年来, 锂离子电池、超级电容器、燃料电池等电化学 储能装置得到了蓬勃发展和广泛研究. 然而, 它们的安全问题引起 了全世界研究人员的极大关注. 因具有更高的安全性和稳定性, 在 液体和固体电解质之间具有特殊状态的凝胶电解质被认为是电化 学能量存储装置中最有希望的候选者. 在这篇综述中, 我们总结了 凝胶电解质在电化学储能装置安全性调控中应用的最新进展, 特 别关注凝胶聚合物电解质和有机小分子量凝胶电解质, 以及气相 二氧化硅基和硅氧烷基凝胶电解质. 最后, 展望了凝胶电解质研究 面临的挑战和未来的发展方向.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mahlia TMI, Saktisahdan TJ, Jannifar A, et al. A review of available methods and development on energy storage; technology update. Renew Sustain Energy Rev, 2014, 33: 532–545

    Article  Google Scholar 

  2. Yoo HD, Markevich E, Salitra G, et al. On the challenge of developing advanced technologies for electrochemical energy storage and conversion. Mater Today, 2014, 17: 110–121

    Article  CAS  Google Scholar 

  3. Díaz-González F, Sumper A, Gomis-Bellmunt O, et al. A review of energy storage technologies for wind power applications. Renew Sustain Energy Rev, 2012, 16: 2154–2171

    Article  Google Scholar 

  4. Cheng X, Pan J, Zhao Y, et al. Gel polymer electrolytes for electrochemical energy storage. Adv Energy Mater, 2018, 8: 1702184

    Article  CAS  Google Scholar 

  5. Peng L, Fang Z, Zhu Y, et al. Holey 2D nanomaterials for electrochemical energy storage. Adv Energy Mater, 2018, 8: 1702179

    Article  CAS  Google Scholar 

  6. Shi Y, Peng L, Ding Y, et al. Nanostructured conductive polymers for advanced energy storage. Chem Soc Rev, 2015, 44: 6684–6696

    Article  CAS  Google Scholar 

  7. Mai L, Tian X, Xu X, et al. Nanowire electrodes for electrochemical energy storage devices. Chem Rev, 2014, 114: 11828–11862

    Article  CAS  Google Scholar 

  8. Jiang J, Li Y, Liu J, et al. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv Mater, 2012, 24: 5166–5180

    Article  CAS  Google Scholar 

  9. Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414: 359–367

    Article  CAS  Google Scholar 

  10. Palacín MR, de Guibert A. Why do batteries fail? Science, 2016, 351: 1253292

    Article  CAS  Google Scholar 

  11. Wang Y, Zhong WH. Development of electrolytes towards achieving safe and high-performance energy-storage devices: A review. ChemElectroChem, 2015, 2: 22–36

    Article  CAS  Google Scholar 

  12. Zhu Y, He X, Mo Y. Strategies based on nitride materials chemistry to stabilize Li metal anode. Adv Sci, 2017, 4: 1600517

    Article  CAS  Google Scholar 

  13. Tatsuma T, Taguchi M, Iwaku M, et al. Inhibition effects of polyacrylonitrile gel electrolytes on lithium dendrite formation. J Electroanal Chem, 1999, 472: 142–146

    Article  CAS  Google Scholar 

  14. Tatsuma T, Taguchi M, Oyama N. Inhibition effect of covalently cross-linked gel electrolytes on lithium dendrite formation. Electrochim Acta, 2001, 46: 1201–1205

    Article  CAS  Google Scholar 

  15. Wu B, Liu Q, Mu D, et al. New desolvated gel electrolyte for rechargeable lithium metal sulfurized polyacrylonitrile (S-PAN) battery. J Phys Chem C, 2014, 118: 28369–28376

    Article  CAS  Google Scholar 

  16. Zhu M, Wu J, Zhong WH, et al. A biobased composite gel polymer electrolyte with functions of lithium dendrites suppressing and manganese ions trapping. Adv Energy Mater, 2018, 8: 1702561

    Article  CAS  Google Scholar 

  17. Zhang P, Zhu J, Wang M, et al. Lithium dendrite suppression and cycling efficiency of lithium anode. Electrochem Commun, 2018, 87: 27–30

    Article  CAS  Google Scholar 

  18. Hoang TKA, Doan TNL, Cho JH, et al. Sustainable gel electrolyte containing pyrazole as corrosion inhibitor and dendrite suppressor for aqueous Zn/LiMn2O4 battery. ChemSusChem, 2017, 10: 2816–2822

    Article  CAS  Google Scholar 

  19. Wang P, Zakeeruddin SM, Moser JE, et al. A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nat Mater, 2003, 2: 402–407

    Article  CAS  Google Scholar 

  20. Chen W, Lei T, Wu C, et al. Designing safe electrolyte systems for a high-stability lithium-sulfur battery. Adv Energy Mater, 2018, 8: 1702348

    Article  CAS  Google Scholar 

  21. Liang SS, Yan WQ, Wu X, et al. Gel polymer electrolytes for lithium ion batteries: Fabrication, characterization and performance. Solid State Ionics, 2018, 318: 2–18

    Article  CAS  Google Scholar 

  22. Fenton DE, Parker JM, Wright PV. Complexes of alkali metal ions with poly(ethylene oxide). Polymer, 1973, 14: 589

    Article  CAS  Google Scholar 

  23. Aziz SB, Woo TJ, Kadir MFZ, Ahmed HM, et al. A conceptual review on polymer electrolytes and ion transport models. J Sci Adv Mater Devices, 2018, 3: 1–17

    Article  Google Scholar 

  24. Hu J, Wang W, Yu R, et al. Solid polymer electrolyte based on ionic bond or covalent bond functionalized silica nanoparticles. RSC Adv, 2017, 7: 54986–54994

    Article  CAS  Google Scholar 

  25. Meyer WH. Polymer electrolytes for lithium-ion batteries. Adv Mater, 1998, 10: 439–448

    Article  CAS  Google Scholar 

  26. Pandey GP, Liu T, Hancock C, et al. Thermostable gel polymer electrolyte based on succinonitrile and ionic liquid for highperformance solid-state supercapacitors. J Power Sources, 2016, 328: 510–519

    Article  CAS  Google Scholar 

  27. Song JY, Wang YY, Wan CC. Review of gel-type polymer electrolytes for lithium-ion batteries. J Power Sources, 1999, 77: 183–197

    Article  CAS  Google Scholar 

  28. Feuillade G, Perche P. Ion-conductive macromolecular gels and membranes for solid lithium cells. J Appl Electrochem, 1975, 5: 63–69

    Article  CAS  Google Scholar 

  29. Li W, Pang Y, Liu J, et al. A PEO-based gel polymer electrolyte for lithium ion batteries. RSC Adv, 2017, 7: 23494–23501

    Article  CAS  Google Scholar 

  30. Kil EH, Choi KH, Ha HJ, et al. Imprintable, bendable, and shape-conformable polymer electrolytes for versatile-shaped lithium-ion batteries. Adv Mater, 2013, 25: 1395–1400

    Article  CAS  Google Scholar 

  31. Dagousset L, Nguyen GTM, Vidal F, et al. Ionic liquids and γ-butyrolactone mixtures as electrolytes for supercapacitors operating over extended temperature ranges. RSC Adv, 2015, 5: 13095–13101

    Article  CAS  Google Scholar 

  32. Dagousset L, Pognon G, Nguyen GTM, et al. Self-standing gel polymer electrolyte for improving supercapacitor thermal and electrochemical stability. J Power Sources, 2018, 391: 86–93

    Article  CAS  Google Scholar 

  33. Iijima T, Toyoguchi Y, Eda N, et al. Quasi-solid organic electrolytes gelatinized with polymethyl-methacrylate and their applications for lithium batteries. Electrochem Soc Jpn, 1985, 53: 619–623

    CAS  Google Scholar 

  34. Zhao L, Huang Y, Liu B, et al. Gel polymer electrolyte basedon polymethyl methacrylate matrix composited with methacrylisobutyl-polyhedral oligomeric silsesquioxane by phase inversion method. Electrochim Acta, 2018, 278: 1–12

    Article  CAS  Google Scholar 

  35. Schwab JJ, Lichtenhan JD. Polyhedral oligomeric silsesquioxane (POSS)-based polymers. Appl Organometal Chem, 1998, 12: 707–713

    Article  CAS  Google Scholar 

  36. Zhang W, Camino G, Yang R. Polymer/polyhedral oligomeric silsesquioxane (POSS) nanocomposites: An overview of fire retardance. Prog Polym Sci, 2017, 67: 77–125

    Article  CAS  Google Scholar 

  37. Lu Q, Fu J, Chen L, et al. Polymeric polyhedral oligomeric silsesquioxane ionic liquids based solid polymer electrolytes for lithium ion batteries. J Power Sources, 2019, 414: 31–40

    Article  CAS  Google Scholar 

  38. Shang D, Fu J, Lu Q, et al. A novel polyhedral oligomeric silsesquioxane based ionic liquids (POSS-ILs) polymer electrolytes for lithium ion batteries. Solid State Ion, 2018, 319: 247–255

    Article  CAS  Google Scholar 

  39. Liu B, Huang Y, Zhao L, et al. A novel non-woven fabric supported gel polymer electrolyte based on poly(methylmethacrylatepolyhedral oligomeric silsesquioxane) by phase inversion method for lithium ion batteries. J Membrane Sci, 2018, 564: 62–72

    Article  CAS  Google Scholar 

  40. Nataraj SK, Yang KS, Aminabhavi TM. Polyacrylonitrile-based nanofibers—A state-of-the-art review. Prog Polym Sci, 2012, 37: 487–513

    Article  CAS  Google Scholar 

  41. Hameed N, Sharp J, Nunna S, et al. Structural transformation of polyacrylonitrile fibers during stabilization and low temperature carbonization. Polym Degrad Stab, 2016, 128: 39–45

    Article  CAS  Google Scholar 

  42. Hu P, Chai J, Duan Y, et al. Progress in nitrile-based polymer electrolytes for high performance lithium batteries. J Mater Chem A, 2016, 4: 10070–10083

    Article  CAS  Google Scholar 

  43. He CF, Liu J, Li J, et al. Blending based polyacrylonitrile/poly (vinyl alcohol) membrane for rechargeable lithium ion batteries. J Membrane Sci, 2018, 560: 30–37

    Article  CAS  Google Scholar 

  44. Raghavan P, Manuel J, Zhao X, et al. Preparation and electrochemical characterization of gel polymer electrolyte based on electrospun polyacrylonitrile nonwoven membranes for lithium batteries. J Power Sources, 2011, 196: 6742–6749

    Article  CAS  Google Scholar 

  45. He C, Liu J, Cui J, et al. A gel polymer electrolyte based on polyacrylonitrile/organic montmorillonite membrane exhibiting dense structure for lithium ion battery. Solid State Ion, 2018, 315: 102–110

    Article  CAS  Google Scholar 

  46. Liu B, Huang Y, Cao H, et al. A novel porous gel polymer electrolyte based on poly(acrylonitrile-polyhedral oligomeric silsesquioxane) with high performances for lithium-ion batteries. J Membrane Sci, 2018, 545: 140–149

    Article  CAS  Google Scholar 

  47. Huang Y, Huang Y, Liu B, et al. Gel polymer electrolyte based on p(acrylonitrile-maleic anhydride) for lithium ion battery. Electrochim Acta, 2018, 286: 242–251

    Article  CAS  Google Scholar 

  48. Prateek, Thakur VK, Gupta RK. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: Synthesis, dielectric properties, and future aspects. Chem Rev, 2016, 116: 4260–4317

    Article  CAS  Google Scholar 

  49. Saito Y, Takeda S, Yamagami S, et al. Effect of the morphological features of the poly(vinylidene difluoride)-based gel electrolytes on the ionic mobility for lithium secondary batteries. Macromolecules, 2019, 52: 2112–2119

    Article  CAS  Google Scholar 

  50. Liu F, Hashim NA, Liu Y, et al. Progress in the production and modification of PVDF membranes. J Membrane Sci, 2011, 375: 1–27

    Article  CAS  Google Scholar 

  51. Zhu Y, Wang F, Liu L, et al. Composite of a nonwoven fabric with poly(vinylidene fluoride) as a gel membrane of high safety for lithium ion battery. Energy Environ Sci, 2013, 6: 618–624

    Article  CAS  Google Scholar 

  52. Zuo X, Ma X, Wu J, et al. Self-supporting ethyl cellulose/poly (vinylidene fluoride) blended gel polymer electrolyte for 5 V high-voltage lithium-ion batteries. Electrochim Acta, 2018, 271: 582–590

    Article  CAS  Google Scholar 

  53. Sheng J, Tong S, He Z, et al. Recent developments of cellulose materials for lithium-ion battery separators. Cellulose, 2017, 24: 4103–4122

    Article  CAS  Google Scholar 

  54. Zhu M, Wu J, Wang Y, et al. Recent advances in gel polymer electrolyte for high-performance lithium batteries. J Energy Chem, 2019, 37: 126–142

    Article  Google Scholar 

  55. Li MX, Wang XW, Yang YQ, et al. A dense cellulose-based membrane as a renewable host for gel polymer electrolyte of lithium ion batteries. J Membrane Sci, 2015, 476: 112–118

    Article  CAS  Google Scholar 

  56. Zhang MY, Li MX, Chang Z, et al. A sandwich PVDF/HEC/PVDF gel polymer electrolyte for lithium ion battery. Electrochim Acta, 2017, 245: 752–759

    Article  CAS  Google Scholar 

  57. Ma X, Zuo X, Wu J, et al. Polyethylene-supported ultra-thin polyvinylidene fluoride/hydroxyethyl cellulose blended polymer electrolyte for 5 V high voltage lithium ion batteries. J Mater Chem A, 2018, 6: 1496–1503

    Article  CAS  Google Scholar 

  58. Chen F, Ren Y, Guo J, et al. Thermo- and electro-dual responsive poly(ionic liquid) electrolyte based smart windows. Chem Commun, 2017, 53: 1595–1598

    Article  CAS  Google Scholar 

  59. Dong Y, Zhang C, Wu L, et al. Self-storage: A novel family of stimuli-responsive polymer materials for optical and electrochemical switching. Macromol Rapid Commun, 2014, 35: 1943–1948

    Article  CAS  Google Scholar 

  60. Chen T, Ferris R, Zhang J, et al. Stimulus-responsive polymer brushes on surfaces: Transduction mechanisms and applications. Prog Polymer Sci, 2010, 35: 94–112

    Article  CAS  Google Scholar 

  61. Chen JK, Chang CJ. Fabrications and applications of stimulus-responsive polymer films and patterns on surfaces: A review. Materials, 2014, 7: 805–875

    Article  CAS  Google Scholar 

  62. Vlad A, Singh N, Galande C, et al. Design considerations for unconventional electrochemical energy storage architectures. Adv Energy Mater, 2015, 5: 1402115

    Article  CAS  Google Scholar 

  63. Choudhury NA, Sampath S, Shukla AK. Hydrogel-polymer electrolytes for electrochemical capacitors: an overview. Energy Environ Sci, 2009, 2: 55–67

    Article  CAS  Google Scholar 

  64. So S, Hayward RC. Tunable upper critical solution temperature of poly(N-isopropylacrylamide) in ionic liquids for sequential and reversible self-folding. ACS Appl Mater Interfaces, 2017, 9: 15785–15790

    Article  CAS  Google Scholar 

  65. Lei Y, Zhang G, Li H. Thermal-responsive nanocomposite hydrogel based on graphene oxide-polyvinyl alcohol/poly(N-isopropylacrylamide). IOP Conf Ser-Mater Sci Eng, 2017, 274: 012115

    Article  Google Scholar 

  66. Xia X, Yih J, D’Souza NA, et al. Swelling and mechanical behavior of poly(N-isopropylacrylamide)/Na-montmorillonite layered silicates composite gels. Polymer, 2003, 44: 3389–3393

    Article  CAS  Google Scholar 

  67. Hall CC, Zhou C, Danielsen SPO, et al. Formation of multicompartment ion gels by stepwise self-assembly of a thermoresponsive ABC triblock terpolymer in an ionic liquid. Macromolecules, 2016, 49: 2298–2306

    Article  CAS  Google Scholar 

  68. Heskins M, Guillet JE. Solution properties of poly(N-isopropylacrylamide). J MacroMol Sci-Part A-Chem, 1968, 2: 1441–1455

    Article  CAS  Google Scholar 

  69. Jiang H, Roberts ME. Achieving thermally stable supercapacitors with a temperature responsive electrolyte. J Mater Sci-Mater Electron, 2019, 30: 6007–6014

    Article  CAS  Google Scholar 

  70. Shi Y, Zhang Q, Zhang Y, et al. Promising and reversible electrolyte with thermal switching behavior for safer electrochemical storage devices. ACS Appl Mater Interfaces, 2018, 10: 7171–7179

    Article  CAS  Google Scholar 

  71. Zhang P, Wang F, Yu M, et al. Two-dimensional materials for miniaturized energy storage devices: from individual devices to smart integrated systems. Chem Soc Rev, 2018, 47: 7426–7451

    Article  CAS  Google Scholar 

  72. Kelly JC, Pepin M, Huber DL, et al. Reversible control of electrochemical properties using thermally-responsive polymer electrolytes. Adv Mater, 2012, 24: 886–889

    Article  CAS  Google Scholar 

  73. Yang H, Liu Z, Chandran BK, et al. Self-protection of electrochemical storage devices via a thermal reversible sol-gel transition. Adv Mater, 2015, 27: 5593–5598

    Article  CAS  Google Scholar 

  74. Mo F, Li H, Pei Z, et al. A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes. Sci Bull, 2018, 63: 1077–1086

    Article  CAS  Google Scholar 

  75. Zhang P, Wang J, Sheng W, et al. Thermoswitchable on-chip microsupercapacitors: one potential self-protection solution for electronic devices. Energy Environ Sci, 2018, 11: 1717–1722

    Article  CAS  Google Scholar 

  76. Macfarlane DR, Forsyth M, Howlett PC, et al. Ionic liquids and their solid-state analogues as materials for energy generation and storage. Nat Rev Mater, 2016, 1: 15005

    Article  CAS  Google Scholar 

  77. MacFarlane DR, Tachikawa N, Forsyth M, et al. Energy applications of ionic liquids. Energy Environ Sci, 2014, 7: 232–250

    Article  CAS  Google Scholar 

  78. Lee JH, Lee AS, Lee JC, et al. Hybrid ionogel electrolytes for high temperature lithium batteries. J Mater Chem A, 2015, 3: 2226–2233

    Article  CAS  Google Scholar 

  79. Galiński M, Lewandowski A, Stępniak I. Ionic liquids as electrolytes. Electrochim Acta, 2006, 51: 5567–5580

    Article  CAS  Google Scholar 

  80. Basile A, Hilder M, Makhlooghiazad F, et al. Ionic liquids and organic ionic plastic crystals: Advanced electrolytes for safer high performance sodium energy storage technologies. Adv Energy Mater, 2018, 8: 1703491

    Article  CAS  Google Scholar 

  81. Al-Masri D, Yunis R, Hollenkamp AF, et al. A symmetrical ionic liquid/Li salt system for rapid ion transport and stable lithium electrochemistry. Chem Commun, 2018, 54: 3660–3663

    Article  CAS  Google Scholar 

  82. Marr PC, Marr AC. Ionic liquid gel materials: applications in green and sustainable chemistry. Green Chem, 2016, 18: 105–128

    Article  Google Scholar 

  83. Taghavikish M, Subianto S, Gu Y, et al. A poly(ionic liquid) gel electrolyte for efficient all solid electrochemical double-layer capacitor. Sci Rep, 2018, 8: 10918

    Article  CAS  Google Scholar 

  84. Hazama T, Fujii K, Sakai T, et al. High-performance gel electrolytes with tetra-armed polymer network for Li ion batteries. J Power Sources, 2015, 286: 470–474

    Article  CAS  Google Scholar 

  85. Hashimoto K, Fujii K, Nishi K, et al. Gelation mechanism of tetra-armed poly(ethylene glycol) in aprotic ionic liquid containing nonvolatile proton source, protic ionic liquid. J Phys Chem B, 2015, 119: 4795–4801

    Article  CAS  Google Scholar 

  86. Ishikawa A, Sakai T, Fujii K. An ionic liquid gel with ultralow concentrations of tetra-arm polymers: Gelation kinetics and mechanical and ion-conducting properties. Polymer, 2019, 166: 38–43

    Article  CAS  Google Scholar 

  87. Zhou N, Wang Y, Zhou Y, et al. Star-shaped multi-arm polymeric ionic liquid based on tetraalkylammonium cation as high performance gel electrolyte for lithium metal batteries. Electrochim Acta, 2019, 301: 284–293

    Article  CAS  Google Scholar 

  88. Raut P, Liang W, Chen YM, et al. Syndiotactic polystyrene-based ionogel membranes for high temperature electrochemical applications. ACS Appl Mater Interfaces, 2017, 9: 30933–30942

    Article  CAS  Google Scholar 

  89. Terech P, Weiss RG. Low molecular mass gelators of organic liquids and the properties of their gels. Chem Rev, 1997, 97: 3133–3160

    Article  CAS  Google Scholar 

  90. de Loos M, Feringa BL, van Esch JH. Design and application of self-assembled low molecular weight hydrogels. Eur J Org Chem, 2005, 17: 3615–3631

    Article  CAS  Google Scholar 

  91. Ye M, Wen X, Wang M, et al. Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes. Mater Today, 2015, 18: 155–162

    Article  CAS  Google Scholar 

  92. Lee CP, Li CT, Ho KC. Use of organic materials in dye-sensitized solar cells. Mater Today, 2017, 20: 267–283

    Article  CAS  Google Scholar 

  93. Yu Q, Yu C, Guo F, et al. A stable and efficient quasi-solid-state dye-sensitized solar cell with a low molecular weight organic gelator. Energy Environ Sci, 2012, 5: 6151–6155

    Article  CAS  Google Scholar 

  94. Tao L, Huo Z, Dai S, et al. Stable quasi-solid-state dye-sensitized solar cell using ionic gel electrolyte with low molecular mass organogelator. Mater Chem Phys, 2015, 152: 62–68

    Article  CAS  Google Scholar 

  95. Wang L, Huo Z, Tao L, et al. Quasi-solid-state dye-sensitized solar cell based on gel electrolyte with high gel to solution transition temperature using low molecular mass organogelator. J Photochem Photobiol A-Chem, 2016, 329: 139–145

    Article  CAS  Google Scholar 

  96. Wang L, Huo Z, Tao L, et al. Effect of the self-assembled gel network formed from a low molecular mass organogelator on the electron kinetics in quasi-solid-state dye-sensitized solar cells. Sci China Mater, 2016, 59: 787–796

    Article  CAS  Google Scholar 

  97. Tao L, Huo Z, Ding Y, et al. High-efficiency and stable quasi-solid-state dye-sensitized solar cell based on low molecular mass organogelator electrolyte. J Mater Chem A, 2015, 3: 2344–2352

    Article  CAS  Google Scholar 

  98. Tao L, Huo Z, Ding Y, et al. Gel electrolyte materials formed from a series of novel low molecular mass organogelators for stable quasi-solid-state dye-sensitized solar cells. J Mater Chem A, 2014, 2: 15921–15930

    Article  CAS  Google Scholar 

  99. Huo Z, Tao L, Dai S, et al. Quasi-solid-state dye sensitized solar cells using supramolecular gel electrolyte formed from two-component low molecular mass organogelators. Sci China Mater, 2015, 58: 447–454

    Article  CAS  Google Scholar 

  100. Huo Z, Wang L, Tao L, et al. A supramolecular gel electrolyte formed from amide based co-gelator for quasi-solid-state dye-sensitized solar cell with boosted electron kinetic processes. J Power Sources, 2017, 359: 80–87

    Article  CAS  Google Scholar 

  101. Tao L, Zhang W, Wang Z, et al. Highly improved photocurrent and stability of dye-sensitized solar cell through quasi-solid-state electrolyte formed by two low molecular mass organogelators. Org Electron, 2019, 65: 179–184

    Article  CAS  Google Scholar 

  102. Zhang W, Wang Z, Chen K, et al. The influences of different bicomponent supramolecular gel electrolytes on the photovoltaic performances of quasi-solid-state dye-sensitized solar cell. Mater Chem Phys, 2019, 221: 430–435

    Article  CAS  Google Scholar 

  103. Venkatesan S, Lee YL. Nanofillers in the electrolytes of dye-sensitized solar cells-A short review. Coord Chem Rev, 2017, 353: 58–112

    Article  CAS  Google Scholar 

  104. Girma WM, Chen CH, Yang CH, et al. A low molecular mass organogelator electrolyte with TiO2 nanoparticles for stable and efficient quasi-solid-state dye sensitized solar cells. RSC Adv, 2017, 7: 7671–7678

    Article  CAS  Google Scholar 

  105. May GJ, Davidson A, Monahov B. Lead batteries for utility energy storage: A review. J Energy Storage, 2018, 15: 145–157

    Article  Google Scholar 

  106. Berndt D. Valve-regulated lead-acid batteries. J Power Sources, 2001, 100: 29–46

    Article  CAS  Google Scholar 

  107. Lambert DWH, Greenwood PHJ, Reed MC. Advances in gelled-electrolyte technology for valve-regulated lead-acid batteries. J Power Sources, 2002, 107: 173–179

    Article  CAS  Google Scholar 

  108. Hernández JC, Soria ML, González M, et al. Studies on electrolyte formulations to improve life of lead acid batteries working under partial state of charge conditions. J Power Sources, 2006, 162: 851–863

    Article  CAS  Google Scholar 

  109. Gençten M, Dönmez KB, Şahin Y, et al. Voltammetric and electrochemical impedimetric behavior of silica-based gel electrolyte for valve-regulated lead-acid battery. J Solid State Electrochem, 2014, 18: 2469–2479

    Article  CAS  Google Scholar 

  110. Chen MQ, Chen HY, Shu D, et al. Effects of preparation condition and particle size distribution on fumed silica gel valve-regulated lead-acid batteries performance. J Power Sources, 2008, 181: 161–171

    Article  CAS  Google Scholar 

  111. Pan K, Shi G, Li A, et al. The performance of a silica-based mixed gel electrolyte in lead acid batteries. J Power Sources, 2012, 209: 262–268

    Article  CAS  Google Scholar 

  112. Tantichanakul T, Chailapakul O, Tantavichet N. Gelled electrolytes for use in absorptive glass mat valve-regulated lead-acid (AGM VRLA) batteries working under 100% depth of discharge conditions. J Power Sources, 2011, 196: 8764–8772

    Article  CAS  Google Scholar 

  113. Tantichanakul T, Chailapakul O, Tantavichet N. Influence of fumed silica and additives on the gel formation and performance of gel valve-regulated lead-acid batteries. J Ind Eng Chem, 2013, 19: 2085–2091

    Article  CAS  Google Scholar 

  114. Gençten M. Investigation the effects of boehmite and gibbsite on the electrochemical behaviours of Gel-VRLA batteries. Int J Electrochem Sci, 2018, 11741–11751

  115. Tang Z, Wang J, Mao X, et al. Investigation and application of polysiloxane-based gel electrolyte in valve-regulated lead-acid battery. J Power Sources, 2007, 168: 49–57

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21773168) and Tianjin Natural Science Foundation (16JCQNJC05000).

Author information

Authors and Affiliations

Authors

Contributions

Yu D and Xu J proposed the topic, organized the manuscript outline and wrote the draft of the manuscript. All the coauthors contributed to the discussion and refinement of the manuscript.

Corresponding author

Correspondence to Jialiang Xu  (徐加良).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Dan Yu received her Bachelor’s degree from Hainan University, China, in 2017. Currently, she is a graduate student in Tianjin University, China. Her research interest is focused on the GEs and helical polymer.

Xinyue Li received her Bachelor’s degree from Hebei University of Engineering, China, in 2015. Currently, she is a graduate student in Tianjin University, China. Her research interest is focused on the nonlinear optical properties of organic self-assemblies.

Jialiang Xu is a professor of materials chemistry at Nankai University. He obtained his PhD from ICCAS in 2010 under the supervision of Prof. Yuliang Li, and then worked as a Marie-Curie Fellow at Radboud University, Nijmegen, hosted by Prof. Alan Rowan and Prof. Theo Rasing. In 2013, he was awarded the NWO-VENI grant, with which he developed his own research profile at the interface between chemistry and physics to study the coupling between light and (supra) molecular systems. He joined the School of Chemical Engineering and Technology at Tianjin University in 2015, and relocated to the School of Materials Science and Engineering at Nankai University in 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, D., Li, X. & Xu, J. Safety regulation of gel electrolytes in electrochemical energy storage devices. Sci. China Mater. 62, 1556–1573 (2019). https://doi.org/10.1007/s40843-019-9475-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-019-9475-4

Keywords

Navigation