Antibacterial mechanism and activity of cerium oxide nanoparticles

  • Mengzhen Zhang (张 萌 真)
  • Chao Zhang (张 超)
  • Xinyun Zhai (翟 欣 昀)Email author
  • Feng Luo (罗 锋)
  • Yaping Du (杜 亚 平)
  • Chunhua Yan (严 纯 华)
Reviews SPECIAL ISSUE: Celebrating the 100th Anniversary of Nankai University


Nanomaterials have been applied as antibacterial agents by virtue of their unique functioning mechanism different from that of conventional antibiotics. Cerium oxide nanoparticles (CeO2 NPs) are important antibacterial agents due to their relatively low toxicity to normal cells and their distinct antibacterial mechanism based on the reversible conversion between two valence states of Ce(III)/Ce (IV). Some studies have been conducted to explore their antibacterial activities; however, systematic research reviews on the related mechanisms and influencing factors are still quite rare. In this review, we discuss the plausible mechanisms of the antibacterial activity of CeO2 NPs, analyze different influencing factors, and summarize various research reports on antibacterial effects on E. coli and S. aureus. We also propose the potential applications and prospects, and hope to provide an in-depth understanding on the antibacterial mechanism and a better guidance to the design and applications of this promising antibacterial material in the future.


cerium oxide nanoparticles antibacterial mechanism electrostatic interaction 



纳米材料因其特殊的抗菌机理, 在抗菌领域得到了广泛应 用. 氧化铈纳米粒子是重要的抗菌材料之一, 具有对正常细胞毒性 低, 且抗菌机理基于可逆价态转化的优势. 目前已有许多关于氧化 铈纳米粒子抗菌活性的研究报道, 但系统性探究其抗菌机理的文 章则极为少见. 本文首先系统性地探究了氧化铈纳米粒子可能的 抗菌机理, 即静电相互作用在抗菌过程中发挥重要作用, 此外抗菌 过程还伴随活性氧物种的产生和纳米粒子对细菌的机械损伤. 其 次, 本文分析了氧化铈纳米粒子抗菌效果的影响因素, 并总结了不 同研究中氧化铈纳米粒子对大肠杆菌和金黄葡萄球菌的抗菌效果. 最后提出了氧化铈纳米粒子可能的应用前景. 本文将有利于对氧 化铈纳米粒子抗菌机理的深入理解, 并为该类材料在未来的设计 和应用提供借鉴.



We gratefully acknowledge the support from the National Funds for Excellent Young Scientists of China (21522106), the National Key R&D Program of China (2017YFA0208000), and the 111 Project (B18030) from China.

Author contributions

Du Y and Yan C proposed the overall concept. Zhang M wrote the paper with the guidance from Du Y, Luo F and Zhai X; Zhang M, Zhang C and Zhai X revised the manuscript. All authors contributed to the general discussion.


  1. 1.
    Stryjewski ME, Corey GR. Methicillin-resistant staphylococcus aureus: An evolving pathogen. Clin Infect Dis, 2014, 58: S10–S19CrossRefGoogle Scholar
  2. 2.
    Seil JT, Webster TJ. Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomed, 2012, 7: 2767Google Scholar
  3. 3.
    Shrivastava S, Bera T, Roy A, et al. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology, 2007, 18: 225103CrossRefGoogle Scholar
  4. 4.
    Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci, 2004, 275: 177–182CrossRefGoogle Scholar
  5. 5.
    Stoimenov PK, Klinger RL, Marchin GL, et al. Metal oxide nanoparticles as bactericidal agents. Langmuir, 2002, 18: 6679–6686CrossRefGoogle Scholar
  6. 6.
    Tran AX, Lester ME, Stead CM, et al. Resistance to the antimicrobial peptide polymyxin requires myristoylation of escherichia coli and salmonella typhimurium lipid A. J Biol Chem, 2005, 280: 28186–28194CrossRefGoogle Scholar
  7. 7.
    Usman MS, El Zowalaty ME, Shameli K, et al. Synthesis, characterization, and antimicrobial properties of copper nanoparticles. Int J Nanomed, 2013, 8: 4467Google Scholar
  8. 8.
    Jones N, Ray B, Ranjit KT, et al. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS MicroBiol Lett, 2008, 279: 71–76CrossRefGoogle Scholar
  9. 9.
    Cho M, Chung H, Choi W, et al. Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection. Water Res, 2004, 38: 1069–1077CrossRefGoogle Scholar
  10. 10.
    AshaRani PV, Low Kah Mun G, Hande MP, et al. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano, 2008, 3: 279–290CrossRefGoogle Scholar
  11. 11.
    Tarnuzzer RW, Colon J, Patil S, et al. Vacancy engineered ceria nanostructures for protection from radiation-induced cellular damage. Nano Lett, 2005, 5: 2573–2577CrossRefGoogle Scholar
  12. 12.
    Tsai YY, Oca-Cossio J, Agering K, et al. Novel synthesis of cerium oxide nanoparticles for free radical scavenging. Nanomedicine, 2007, 2: 325–332CrossRefGoogle Scholar
  13. 13.
    Park B, Donaldson K, Duffin R, et al. Hazard and risk assessment of a nanoparticulate cerium oxide-based diesel fuel additive—A case study. Inhalation Toxicol, 2008, 20: 547–566CrossRefGoogle Scholar
  14. 14.
    De Marzi L, Monaco A, De Lapuente J, et al. Cytotoxicity and genotoxicity of ceria nanoparticles on different cell lines in vitro. Int J Mol Sci, 2013, 14: 3065–3077CrossRefGoogle Scholar
  15. 15.
    Ingle AP, Duran N, Rai M. Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: A review. Appl Microbiol Biotechnol, 2014, 98: 1001–1009CrossRefGoogle Scholar
  16. 16.
    Chen BH, Suresh Babu K, Anandkumar M, et al. Cytotoxicity and antibacterial activity of gold-supported cerium oxide nanoparticles. Int J Nanomed, 2014, 9: 5515CrossRefGoogle Scholar
  17. 17.
    Sun C, Li H, Chen L. Nanostructured ceria-based materials: Synthesis, properties, and applications. Energy Environ Sci, 2012, 5: 8475CrossRefGoogle Scholar
  18. 18.
    Wang X, Jiang Z, Zheng B, et al. Synthesis and shape-dependent catalytic properties of CeO2 nanocubes and truncated octahedra. CrystEngComm, 2012, 14: 7579–7582CrossRefGoogle Scholar
  19. 19.
    Wang Y, Liu R, LüG M, et al. Ceria nanostructures and their catalytic applications. J Chin Rare Earth Soc, 2014, 32: 257Google Scholar
  20. 20.
    Xing S, Yu S, Deng Y, et al. Effect of cerium on abrasive wear behaviour of hardfacing alloy. J Rare Earths, 2012, 30: 69–73CrossRefGoogle Scholar
  21. 21.
    Feng X, Sayle DC, Wang ZL, et al. Converting ceria polyhedral nanoparticles into single-crystal nanospheres. Science, 2006, 312: 1504–1508CrossRefGoogle Scholar
  22. 22.
    Yahiro H. High temperature fuel cell with ceria-yttria solid electrolyte. J Electrochem Soc, 1988, 135: 2077CrossRefGoogle Scholar
  23. 23.
    Atkinson A, Barnett S, Gorte RJ, et al. Advanced Anodes for High-Temperature Fuel Cells. Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group. Singapore: World Scientific, 2010, 213–223Google Scholar
  24. 24.
    Lv GM, Wang YJ, Liu R, et al. The application of nanoceria in the bio-antioxidation. Sci Sin Chim, 2013, 43: 1309–1321CrossRefGoogle Scholar
  25. 25.
    Li R. Synthesis and UV-shielding properties of ZnO- and CaO-doped CeO2 via soft solution chemical process. Solid State Ion, 2002, 151: 235–241CrossRefGoogle Scholar
  26. 26.
    Hirst SM, Karakoti AS, Tyler RD, et al. Anti-inflammatory properties of cerium oxide nanoparticles. Small, 2009, 5: 2848–2856CrossRefGoogle Scholar
  27. 27.
    Trovarelli A, Fornasiero P. Catalysis by Ceria and Related Materials. Singapore: World Scientific, 2013CrossRefGoogle Scholar
  28. 28.
    Blank JH, Beckers J, Collignon PF, et al. Redox kinetics of ceria-based mixed oxides in selective hydrogen combustion. Chem-PhysChem, 2007, 8: 2490–2497Google Scholar
  29. 29.
    Chen HT, Choi YM, Liu M, et al. A theoretical study of surface reduction mechanisms of CeO2 (111) and (110) by H2. Chem-PhysChem, 2007, 8: 849–855Google Scholar
  30. 30.
    Mo L, Zheng X, Yeh CT. A novel CeO2/ZnO catalyst for hydrogen production from the partial oxidation of methanol. Chem-PhysChem, 2005, 6: 1470–1472Google Scholar
  31. 31.
    Jasinski P, Suzuki T, Anderson HU. Nanocrystalline undoped ceria oxygen sensor. Senor Actuat B-Chem, 2003, 95: 73–77CrossRefGoogle Scholar
  32. 32.
    Eguchi K, Setoguchi T, Inoue T, et al. Electrical properties of ceria-based oxides and their application to solid oxide fuel cells. Solid State Ion, 1992, 52: 165–172CrossRefGoogle Scholar
  33. 33.
    Keating PRL, Scanlon DO, Watson GW. Intrinsic ferromagnetism in CeO2: Dispelling the myth of vacancy site localization mediated superexchange. J Phys-Condens Matter, 2009, 21: 405502CrossRefGoogle Scholar
  34. 34.
    Song YQ, Zhang HW, Yang QH, et al. Electronic structure and magnetic properties of Co-doped CeO2: based on first principle calculation. J Phys-Condens Matter, 2009, 21: 125504CrossRefGoogle Scholar
  35. 35.
    Shoko E, Smith MF, McKenzie RH. Charge distribution near bulk oxygen vacancies in cerium oxides. J Phys-Condens Matter, 2010, 22: 223201CrossRefGoogle Scholar
  36. 36.
    Skorodumova NV, Simak SI, Lundqvist BI, et al. Quantum origin of the oxygen storage capability of ceria. Phys Rev Lett, 2002, 89: 166601CrossRefGoogle Scholar
  37. 37.
    Deshpande S, Patil S, Kuchibhatla SV, et al. Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. Appl Phys Lett, 2005, 87: 133113CrossRefGoogle Scholar
  38. 38.
    Krishnamoorthy K, Veerapandian M, Zhang LH, et al. Surface chemistry of cerium oxide nanocubes: Toxicity against pathogenic bacteria and their mechanistic study. J Ind Eng Chem, 2014, 20: 3513–3517CrossRefGoogle Scholar
  39. 39.
    Korsvik C, Patil S, Seal S, et al. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem Commun, 2007, 303: 1056–1058CrossRefGoogle Scholar
  40. 40.
    Pirmohamed T, Dowding JM, Singh S, et al. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem Commun, 2010, 46: 2736–2738CrossRefGoogle Scholar
  41. 41.
    Asati A, Santra S, Kaittanis C, et al. Oxidase-like activity of polymer-coated cerium oxide nanoparticles. Angew Chem Int Ed, 2009, 48: 2308–2312CrossRefGoogle Scholar
  42. 42.
    Huang Y, Ren J, Qu X. Nanozymes: Classification, catalytic mechanisms, activity regulation, and applications. Chem Rev, 2019, 119: 4357–4412CrossRefGoogle Scholar
  43. 43.
    Gupta A, Das S, Neal CJ, et al. Controlling the surface chemistry of cerium oxide nanoparticles for biological applications. J Mater Chem B, 2016, 4: 3195–3202CrossRefGoogle Scholar
  44. 44.
    Schubert D, Dargusch R, Raitano J, et al. Cerium and yttrium oxide nanoparticles are neuroprotective. Biochem BioPhys Res Commun, 2006, 342: 86–91CrossRefGoogle Scholar
  45. 45.
    Kirchner C, Liedl T, Kudera S, et al. Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett, 2005, 5: 331–338CrossRefGoogle Scholar
  46. 46.
    Franklin NM, Rogers NJ, Apte SC, et al. Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): The importance of particle solubility. Environ Sci Technol, 2007, 41: 8484–8490CrossRefGoogle Scholar
  47. 47.
    Hoecke KV, Quik JTK, Mankiewicz-Boczek J, et al. Fate and effects of CeO2 nanoparticles in aquatic ecotoxicity tests. Environ Sci Technol, 2009, 43: 4537–4546CrossRefGoogle Scholar
  48. 48.
    Dickson JS, Koohmaraie M. Cell surface charge characteristics and their relationship to bacterial attachment to meat surfaces. Appl Environ Microbiol, 1989, 55: 832–836Google Scholar
  49. 49.
    Thill A, Zeyons O, Spalla O, et al. Cytotoxicity of CeO2 nano-particles for escherichia coli. physico-chemical insight of the cytotoxicity mechanism. Environ Sci Technol, 2006, 40: 6151–6156CrossRefGoogle Scholar
  50. 50.
    Zeyons O, Thill A, Chauvat F, et al. Direct and indirect CeO2 nanoparticles toxicity for escherichia coli and synechocystis. Nanotoxicology, 2009, 3: 284–295CrossRefGoogle Scholar
  51. 51.
    Pelletier DA, Suresh AK, Holton GA, et al. Effects of engineered cerium oxide nanoparticles on bacterial growth and viability. Appl Environ MicroBiol, 2010, 76: 7981–7989CrossRefGoogle Scholar
  52. 52.
    He X, Kuang Y, Li Y, et al. Changing exposure media can reverse the cytotoxicity of ceria nanoparticles for escherichia coli. Nanotoxicology, 2012, 6: 233–240CrossRefGoogle Scholar
  53. 53.
    Sobek JM, Talburt DE. Effects of the rare earth cerium on Escherichia coli. J Bacteriol, 1968, 95: 47–51Google Scholar
  54. 54.
    Li Y, Zhang W, Niu J, et al. Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano, 2012, 6: 5164–5173CrossRefGoogle Scholar
  55. 55.
    Aruguete DM, Kim B, Hochella MF, et al. Antimicrobial nano-technology: Its potential for the effective management of microbial drug resistance and implications for research needs in microbial nanotoxicology. Environ Sci-Processes Impacts, 2013, 15: 93–102CrossRefGoogle Scholar
  56. 56.
    Alpaslan E, Geilich BM, Yazici H, et al. pH-controlled cerium oxide nanoparticle inhibition of both Gram-positive and Gramnegative bacteria growth. Sci Rep, 2017, 7: 45859CrossRefGoogle Scholar
  57. 57.
    Arumugam A, Karthikeyan C, Haja Hameed AS, et al. Synthesis of cerium oxide nanoparticles using Gloriosa superba L. leaf extract and their structural, optical and antibacterial properties. Mater Sci Eng-C, 2015, 49: 408–415CrossRefGoogle Scholar
  58. 58.
    Tong GX, Du FF, Liang Y, et al. Polymorphous ZnO complex architectures: Selective synthesis, mechanism, surface area and Zn-polar plane-codetermining antibacterial activity. J Mater Chem B, 2013, 1: 454–463CrossRefGoogle Scholar
  59. 59.
    Akhavan O, Ghaderi E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano, 2010, 4: 5731–5736CrossRefGoogle Scholar
  60. 60.
    Charbgoo F, Ahmad MB, Darroudi M. Cerium oxide nano-particles: Green synthesis and biological applications. Int J Nanomed, 2017, Volume 12: 1401–1413CrossRefGoogle Scholar
  61. 61.
    Farias IAP, Dos Santos CCL, Sampaio FC. Antimicrobial activity of cerium oxide nanoparticles on opportunistic microorganisms: A systematic review. Biomed Res Int, 2018, 2018(3): 1–14CrossRefGoogle Scholar
  62. 62.
    Roduner E. Size matters: Why nanomaterials are different. Chem Soc Rev, 2006, 35: 583–592CrossRefGoogle Scholar
  63. 63.
    Farokhzad OC, Cheng J, Teply BA, et al. Targeted nanoparticleaptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci USA, 2006, 103: 6315–6320CrossRefGoogle Scholar
  64. 64.
    Kuang Y, He X, Zhang Z, et al. Comparison study on the antibacterial activity of nano- or bulk-cerium oxide. J Nanosci Nanotech, 2011, 11: 4103–4108CrossRefGoogle Scholar
  65. 65.
    Gottenbos B, Grijpma DW, van der Mei HC, et al. Antimicrobial effects of positively charged surfaces on adhering Gram-positive and Gram-negative bacteria. J Antimicrob Chemother, 2001, 48: 7–13CrossRefGoogle Scholar
  66. 66.
    Zhu Y, Ran T, Li Y, et al. Dependence of the cytotoxicity of multi-walled carbon nanotubes on the culture medium. Nanotechnology, 2006, 17: 4668–4674CrossRefGoogle Scholar
  67. 67.
    Limbach LK, Li Y, Grass RN, et al. Oxide nanoparticle uptake in human lung fibroblasts: Effects of particle size, agglomeration, and diffusion at low concentrations. Environ Sci Technol, 2005, 39: 9370–9376CrossRefGoogle Scholar
  68. 68.
    Mathew TV, Kuriakose S. Studies on the antimicrobial properties of colloidal silver nanoparticles stabilized by bovine serum albumin. Colloids Surfs B-Biointerfaces, 2013, 101: 14–18CrossRefGoogle Scholar
  69. 69.
    Babenko L, Zholobak N, Shcherbakov A, et al. Antibacterial activity of cerium colloids against opportunistic microorganisms in vitro. Mikrobiolohichnyĭ zhurnal, 2012, 74: 54–62Google Scholar
  70. 70.
    Surendra TV, Roopan SM. Photocatalytic and antibacterial properties of phytosynthesized CeO2 NPs using Moringa oleifera peel extract. J PhotoChem PhotoBiol B-Biol, 2016, 161: 122–128CrossRefGoogle Scholar
  71. 71.
    Cuahtecontzi-Delint R, Mendez-Rojas MA, Bandala ER, et al. Enhanced antibacterial activity of CeO2 nanoparticles by surfactants. Int J Chem Reactor Eng, 2013, 11: 781–785CrossRefGoogle Scholar
  72. 72.
    Maqbool Q, Nazar M, Naz S, et al. Antimicrobial potential of green synthesized CeO2 nanoparticles from Olea europaea leaf extract. Int J Nanomed, 2016, Volume 11: 5015–5025CrossRefGoogle Scholar
  73. 73.
    Patil SN, Paradeshi JS, Chaudhari PB, et al. Bio-therapeutic potential and cytotoxicity assessment of pectin-mediated synthesized nanostructured cerium oxide. Appl Biochem Biotechnol, 2016, 180: 638–654CrossRefGoogle Scholar
  74. 74.
    Gopinath K, Karthika V, Sundaravadivelan C, et al. Mycogenesis of cerium oxide nanoparticles using Aspergillus niger culture filtrate and their applications for antibacterial and larvicidal activities. J Nanostruct Chem, 2015, 5: 295–303CrossRefGoogle Scholar
  75. 75.
    Reddy Yadav LS, Manjunath K, Archana B, et al. Fruit juice extract mediated synthesis of CeO2 nanoparticles for antibacterial and photocatalytic activities. Eur Phys J Plus, 2016, 131: 154CrossRefGoogle Scholar
  76. 76.
    Malleshappa J, Nagabhushana H, Sharma SC, et al. Leucas aspera mediated multifunctional CeO2 nanoparticles: Structural, photoluminescent, photocatalytic and antibacterial properties. Spectro-Chim Acta Part A-Mol Biomol Spectr, 2015, 149: 452–462CrossRefGoogle Scholar
  77. 77.
    Ravishankar TN, Ramakrishnappa T, Nagaraju G, et al. Synthesis and characterization of CeO2 nanoparticles via solution combustion method for photocatalytic and antibacterial activity studies. ChemistryOpen, 2015, 4: 146–154CrossRefGoogle Scholar
  78. 78.
    Wang Q, Perez JM, Webster TJ. Inhibited growth of pseudomonas aeruginosa by dextran- and polyacrylic acid-coated ceria nano-particles. Int J Nanomed, 2013, 8: 3395Google Scholar
  79. 79.
    Huang X, Li LD, Lyu GM, et al. Chitosan-coated cerium oxide nanocubes accelerate cutaneous wound healing by curtailing persistent inflammation. Inorg Chem Front, 2018, 5: 386–393CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Mengzhen Zhang (张 萌 真)
    • 1
  • Chao Zhang (张 超)
    • 1
  • Xinyun Zhai (翟 欣 昀)
    • 1
    Email author
  • Feng Luo (罗 锋)
    • 2
  • Yaping Du (杜 亚 平)
    • 1
  • Chunhua Yan (严 纯 华)
    • 1
    • 3
    • 4
  1. 1.Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced MaterialsNankai UniversityTianjinChina
  2. 2.IMDEA Nanoscience, Faraday 9Ciudad Universitaria de CantoblancoMadridSpain
  3. 3.Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
  4. 4.College of Chemistry and Chemical EngineeringLanzhou UniversityLanzhouChina

Personalised recommendations