Copper nanomaterials and assemblies for soft electronics

  • Yang Feng (冯阳)
  • Jian Zhu (朱剑)Email author
Reviews SPECIAL ISSUE: Celebrating the 100th Anniversary of Nankai University


Soft electronics that can simultaneously offer electronic functions and the capability to be deformed into arbitrary shapes are becoming increasingly important for wearable and bio-implanted applications. The past decade has witnessed tremendous progress in this field with a myriad of achievements in the preparation of soft electronic conductors, semiconductors, and dielectrics. Among these materials, copper-based soft electronic materials have attracted considerable attention for their use in flexible or stretchable electrodes or interconnecting circuits due to their low cost and abundance with excellent optical, electrical and mechanical properties. In this review, we summarize the recent progress on these materials with the detailed discussions of the synthesis of copper nanomaterials, approaches for their assemblies, strategies to resist the ambient corrosion, and their applications in various fields including flexible electrodes, sensors, and other soft devices. We conclude our discussions with perspectives on the remaining challenges to make copper soft conductors available for more widespread applications.


copper nanomaterials assemblies composites stretchable conductors soft electronics 



柔性电子在可穿戴和生物植入等应用中发挥着越来越重要的作用. 柔性电子在实现一定电子功能的同时, 具备变形成任意形状的能力. 该领域在过去的十年里进展显著, 在柔性导体、半导体、 介电材料的制备中成果颇多. 在这些材料中, 铜基柔性导体由于其价格低廉, 地球储量丰富, 光、 电、 机械性能优异, 在柔性、 可拉伸电极或者电路互连中有着广阔的应用前景. 在这篇综述中, 我们总结了这些材料的最新进展, 详细讨论了铜纳米材料的合成、 组装、抗氧化腐蚀策略以及它们在各个领域的应用(如柔性电极、 传感器和其他柔性器件). 最后, 我们讨论了铜基柔性导体为应对更广泛的应用场景仍需面临的一系列挑战.



This work was supported by the National Natural Science Foundation of China (51873088), Tianjin Municipal Science and Technology Commission (18JCZDJC38400) in China, and “the Fundamental Research Funds for the Central Universities”, Nankai University (023/63191303).

Supplementary material

40843_2019_9468_MOESM1_ESM.pdf (1.7 mb)
Copper nanomaterials and assemblies for soft electronics


  1. 1.
    Markvicka EJ, Bartlett MD, Huang X, et al. An autonomously electrically self-healing liquid metal-elastomer composite for robust soft-matter robotics and electronics. Nat Mater, 2018, 17: 618–624CrossRefGoogle Scholar
  2. 2.
    Park JU, Hardy M, Kang SJ, et al. High-resolution electro-hydrodynamic jet printing. Nat Mater, 2007, 6: 782–789CrossRefGoogle Scholar
  3. 3.
    Guo R, Yao S, Sun X, et al. Semi-liquid metal and adhesion-selection enabled rolling and transfer (SMART) printing: a general method towards fast fabrication of flexible electronics. Sci China Mater, 2019, 62: 982–994CrossRefGoogle Scholar
  4. 4.
    Rogers JA, Someya T, Huang Y. Materials and mechanics for stretchable electronics. Science, 2010, 327: 1603–1607CrossRefGoogle Scholar
  5. 5.
    Choi S, Han SI, Jung D, et al. Highly conductive, stretchable and biocompatible Ag-Au core-sheath nanowire composite for wearable and implantable bioelectronics. Nat Nanotech, 2018, 13: 1048–1056CrossRefGoogle Scholar
  6. 6.
    Gong S, Schwalb W, Wang Y, et al. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat Commun, 2014, 5: 3132CrossRefGoogle Scholar
  7. 7.
    Wang S, Xu J, Wang W, et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature, 2018, 555: 83–88CrossRefGoogle Scholar
  8. 8.
    Kim D, Kwon J, Jung J, et al. A transparent and flexible capacitive-force touch pad from high-aspect-ratio copper nanowires with enhanced oxidation resistance for applications in wearable electronics. Small Methods, 2018, 2: 1800077CrossRefGoogle Scholar
  9. 9.
    Hong I, Lee S, Kim D, et al. Study on the oxidation of copper nanowire network electrodes for skin mountable flexible, stretchable and wearable electronics applications. Nanotechnology, 2018, 30: 074001CrossRefGoogle Scholar
  10. 10.
    Liu YJ, Cao WT, Ma MG, et al. Ultrasensitive wearable soft strain sensors of conductive, self-healing, and elastic hydrogels with synergistic “soft and hard” hybrid networks. ACS Appl Mater Interfaces, 2017, 9: 25559–25570CrossRefGoogle Scholar
  11. 11.
    Shi R, Lou Z, Chen S, et al. Flexible and transparent capacitive pressure sensor with patterned microstructured composite rubber dielectric for wearable touch keyboard application. Sci China Mater, 2018, 61: 1587–1595CrossRefGoogle Scholar
  12. 12.
    Jian M, Wang C, Wang Q, et al. Advanced carbon materials for flexible and wearable sensors. Sci China Mater, 2017, 60: 1026–1062CrossRefGoogle Scholar
  13. 13.
    Liang J, Tong K, Pei Q. A water-based silver-nanowire screen-print ink for the fabrication of stretchable conductors and wearable thin-film transistors. Adv Mater, 2016, 28: 5986–5996CrossRefGoogle Scholar
  14. 14.
    Zhang Y, Su L, Manuzzi D, et al. Ultrasensitive and selective non-enzymatic glucose detection using copper nanowires. Biosens Bioelectron, 2012, 31: 426–432CrossRefGoogle Scholar
  15. 15.
    Zhai H, Li Y, Chen L, et al. Semi-transparent polymer solar cells with all-copper nanowire electrodes. Nano Res, 2018, 11: 1956–1966CrossRefGoogle Scholar
  16. 16.
    Lian L, Wang H, Dong D, et al. Highly robust and ultrasmooth copper nanowire electrode by one-step coating for organic light-emitting diodes. J Mater Chem C, 2018, 6: 9158–9165CrossRefGoogle Scholar
  17. 17.
    Wang Y, Liu P, Wang H, et al. Flexible organic light-emitting devices with copper nanowire composite transparent conductive electrode. J Mater Sci, 2019, 54: 2343–2350CrossRefGoogle Scholar
  18. 18.
    Ho MD, Ling Y, Yap LW, et al. Percolating network of ultrathin gold nanowires and silver nanowires toward “invisible” wearable sensors for detecting emotional expression and apexcardiogram. Adv Funct Mater, 2017, 27: 1700845CrossRefGoogle Scholar
  19. 19.
    Chun KY, Oh Y, Rho J, et al. Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. Nat Nanotech, 2010, 5: 853–857CrossRefGoogle Scholar
  20. 20.
    Cheng Y, Wang R, Chan KH, et al. A biomimetic conductive tendril for ultrastretchable and integratable electronics, muscles, and sensors. ACS Nano, 2018, 12: 3898–3907CrossRefGoogle Scholar
  21. 21.
    Wu H, Huang YA, Xu F, et al. Energy harvesters for wearable and stretchable electronics: from flexibility to stretchability. Adv Mater, 2016, 28: 9881–9919CrossRefGoogle Scholar
  22. 22.
    Fu X, Li Z, Xu L, et al. Amphiphilic core-sheath structured composite fiber for comprehensively performed supercapacitor. Sci China Mater, 2019, 62: 955–964CrossRefGoogle Scholar
  23. 23.
    Guo K, Li Y, Li C, et al. Compact self-standing layered film assembled by V2O5·nH2O/CNTs 2D/1D composites for high volumetric capacitance flexible supercapacitors. Sci China Mater, 2019, 62: 936–946CrossRefGoogle Scholar
  24. 24.
    Jia R, Li L, Ai Y, et al. Self-healable wire-shaped supercapacitors with two twisted NiCo2O4 coated polyvinyl alcohol hydrogel fibers. Sci China Mater, 2018, 61: 254–262CrossRefGoogle Scholar
  25. 25.
    Liu J, Ye J, Pan F, et al. Solid-state yet flexible supercapacitors made by inkjet-printing hybrid ink of carbon quantum dots/graphene oxide platelets on paper. Sci China Mater, 2019, 62: 545–554CrossRefGoogle Scholar
  26. 26.
    Zang X, Hou Y, Wang T, et al. Temperature-resistant and flexible supercapacitors based on 10-inch wafer-scale nanocarbon films. Sci China Mater, 2019, 62: 947–954CrossRefGoogle Scholar
  27. 27.
    Zhou J, Chen N, Ge Y, et al. Flexible all-solid-state micro-supercapacitor based on Ni fiber electrode coated with MnO2 and reduced graphene oxide via electrochemical deposition. Sci China Mater, 2018, 61: 243–253CrossRefGoogle Scholar
  28. 28.
    Li K, Zhang J. Recent advances in flexible supercapacitors based on carbon nanotubes and graphene. Sci China Mater, 2018, 61: 210–232CrossRefGoogle Scholar
  29. 29.
    Choi S, Han SI, Kim D, et al. High-performance stretchable conductive nanocomposites: materials, processes, and device applications. Chem Soc Rev, 2019, 48: 1566–1595CrossRefGoogle Scholar
  30. 30.
    Kim HW, Kim TY, Park HK, et al. Hygroscopic auxetic on-skin sensors for easy-to-handle repeated daily use. ACS Appl Mater Interfaces, 2018, 10: 40141–40148CrossRefGoogle Scholar
  31. 31.
    José Andrés L, Fe Menéndez M, Gómez D, et al. Rapid synthesis of ultra-long silver nanowires for tailor-made transparent conductive electrodes: proof of concept in organic solar cells. Nanotechnology, 2015, 26: 265201CrossRefGoogle Scholar
  32. 32.
    Dou L, Cui F, Yu Y, et al. Solution-processed copper/reduced-graphene-oxide core/shell nanowire transparent conductors. ACS Nano, 2016, 10: 2600–2606CrossRefGoogle Scholar
  33. 33.
    Zhao J, Wen C, Sun R, et al. A sequential process of graphene exfoliation and site-selective copper/graphene metallization enabled by multifunctional 1-pyrenebutyric acid tetrabutylammonium salt. ACS Appl Mater Interfaces, 2019, 11: 6448–6455CrossRefGoogle Scholar
  34. 34.
    Zhang B, Li W, Jiu J, et al. Large-scale and galvanic replacement free synthesis of Cu@Ag core-shell nanowires for flexible electronics. Inorg Chem, 2019, 58: 3374–3381CrossRefGoogle Scholar
  35. 35.
    Yin Z, Chen S, Guan Y, et al. Copper nanowire dispersion through an electrostatic dispersion mechanism for high-performance flexible transparent conducting films and optoelectronic devices. ACS Appl Mater Interfaces, 2019, 11: 5264–5275CrossRefGoogle Scholar
  36. 36.
    Biçer M, Şişman İ. Controlled synthesis of copper nano/micro-structures using ascorbic acid in aqueous CTAB solution. Powder Technol, 2010, 198: 279–284CrossRefGoogle Scholar
  37. 37.
    Jin M, He G, Zhang H, et al. Shape-controlled synthesis of copper nanocrystals in an aqueous solution with glucose as a reducing agent and hexadecylamine as a capping agent. Angew Chem Int Ed, 2011, 50: 10560–10564CrossRefGoogle Scholar
  38. 38.
    Kang B, Han S, Kim J, et al. One-step fabrication of copper electrode by laser-induced direct local reduction and agglomeration of copper oxide nanoparticle. J Phys Chem C, 2011, 115: 23664–23670CrossRefGoogle Scholar
  39. 39.
    Lee Y, Choi J, Jong Lee K, et al. Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics. Nanotechnology, 2008, 19: 415604CrossRefGoogle Scholar
  40. 40.
    Park BK, Jeong S, Kim D, et al. Synthesis and size control of monodisperse copper nanoparticles by polyol method. J Colloid Interface Sci, 2007, 311: 417–424CrossRefGoogle Scholar
  41. 41.
    Ruparelia JP, Chatterjee AK, Duttagupta SP, et al. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater, 2008, 4: 707–716CrossRefGoogle Scholar
  42. 42.
    Salavati-Niasari M, Davar F, Mir N. Synthesis and characterization of metallic copper nanoparticles via thermal decomposition. Polyhedron, 2008, 27: 3514–3518CrossRefGoogle Scholar
  43. 43.
    Sim H, Lee J, Yu T, et al. Size-tunable and scalable synthesis of uniform copper nanocrystals. RSC Adv, 2015, 5: 2756–2761CrossRefGoogle Scholar
  44. 44.
    Suh YD, Kwon J, Lee J, et al. Maskless fabrication of highly robust, flexible transparent Cu conductor by random crack network assisted Cu nanoparticle patterning and laser sintering. Adv Electron Mater, 2016, 2: 1600277CrossRefGoogle Scholar
  45. 45.
    Yu T, Koh T, Lim B. Synthesis of copper nanoparticles with controlled sizes by reverse micelle method. J Nanosci Nanotechnol, 2013, 13: 3250–3253CrossRefGoogle Scholar
  46. 46.
    Thanh NTK, Maclean N, Mahiddine S. Mechanisms of nucleation and growth of nanoparticles in solution. Chem Rev, 2014, 114: 7610–7630CrossRefGoogle Scholar
  47. 47.
    van Embden J, Chesman ASR, Jasieniak JJ. The heat-up synthesis of colloidal nanocrystals. Chem Mater, 2015, 27: 2246–2285CrossRefGoogle Scholar
  48. 48.
    Yin Y, Alivisatos AP. Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature, 2005, 437: 664–670CrossRefGoogle Scholar
  49. 49.
    Rathmell AR, Wiley BJ. The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates. Adv Mater, 2011, 23: 4798–4803CrossRefGoogle Scholar
  50. 50.
    Liu Z, Yang Y, Liang J, et al. Synthesis of copper nanowires via a complex-surfactant-assisted hydrothermal reduction process. J Phys Chem B, 2003, 107: 12658–12661CrossRefGoogle Scholar
  51. 51.
    Chang Y, Lye ML, Zeng HC. Large-scale synthesis of high-quality ultralong copper nanowires. Langmuir, 2005, 21: 3746–3748CrossRefGoogle Scholar
  52. 52.
    Rathmell AR, Bergin SM, Hua YL, et al. The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films. Adv Mater, 2010, 22: 3558–3563CrossRefGoogle Scholar
  53. 53.
    Kim MJ, Flowers PF, Stewart IE, et al. Ethylenediamine promotes Cu nanowire growth by inhibiting oxidation of Cu(111). J Am Chem Soc, 2017, 139: 277–284CrossRefGoogle Scholar
  54. 54.
    Kim MJ, Alvarez S, Yan T, et al. Modulating the growth rate, aspect ratio, and yield of copper nanowires with alkylamines. Chem Mater, 2018, 30: 2809–2818CrossRefGoogle Scholar
  55. 55.
    Fu QQ, Li YD, Li HH, et al. In situ seed-mediated high-yield synthesis of copper nanowires on large scale. Langmuir, 2019, 35: 4364–4369CrossRefGoogle Scholar
  56. 56.
    Zhang D, Wang R, Wen M, et al. Synthesis of ultralong copper nanowires for high-performance transparent electrodes. J Am Chem Soc, 2012, 134: 14283–14286CrossRefGoogle Scholar
  57. 57.
    Huang X, Chen Y, Chiu CY, et al. A versatile strategy to the selective synthesis of Cu nanocrystals and the in situ conversion to CuRu nanotubes. Nanoscale, 2013, 5: 6284–6290CrossRefGoogle Scholar
  58. 58.
    Shi Y, Li H, Chen L, et al. Obtaining ultra-long copper nanowires via a hydrothermal process. Sci Technol Adv Mat, 2005, 6: 761–765CrossRefGoogle Scholar
  59. 59.
    Huang W, Li J, Zhao S, et al. Highly electrically conductive and stretchable copper nanowires-based composite for flexible and printable electronics. Compos Sci Technol, 2017, 146: 169–176CrossRefGoogle Scholar
  60. 60.
    Ye E, Zhang SY, Liu S, et al. Disproportionation for growing copper nanowires and their controlled self-assembly facilitated by ligand exchange. Chem Eur J, 2011, 17: 3074–3077CrossRefGoogle Scholar
  61. 61.
    Mohl M, Pusztai P, Kukovecz A, et al. Low-temperature large-scale synthesis and electrical testing of ultralong copper nano-wires. Langmuir, 2010, 26: 16496–16502CrossRefGoogle Scholar
  62. 62.
    Zhang B, Li W, Yang Y, et al. Fully embedded CuNWs/PDMS conductor with high oxidation resistance and high conductivity for stretchable electronics. J Mater Sci, 2019, 54: 6381–6392CrossRefGoogle Scholar
  63. 63.
    Kevin M, Lim GYR, Ho GW. Facile control of copper nanowire dimensions via the Maillard reaction: using food chemistry for fabricating large-scale transparent flexible conductors. Green Chem, 2015, 17: 1120–1126CrossRefGoogle Scholar
  64. 64.
    Guo H, Lin N, Chen Y, et al. Copper nanowires as fully transparent conductive electrodes. Sci Rep, 2013, 3: 2323CrossRefGoogle Scholar
  65. 65.
    Cui F, Yu Y, Dou L, et al. Synthesis of ultrathin copper nanowires using tris(trimethylsilyl)silane for high-performance and low-haze transparent conductors. Nano Lett, 2015, 15: 7610–7615CrossRefGoogle Scholar
  66. 66.
    Yang X, Hu X, Wang Q, et al. Large-scale stretchable semi-embedded copper nanowire transparent conductive films by an electrospinning template. ACS Appl Mater Interfaces, 2017, 9: 26468–26475CrossRefGoogle Scholar
  67. 67.
    An S, Jo HS, Kim DY, et al. Self-junctioned copper nanofiber transparent flexible conducting film via electrospinning and electroplating. Adv Mater, 2016, 28: 7149–7154CrossRefGoogle Scholar
  68. 68.
    Dzenis Y. Spinning continuous fibers for nanotechnology. Science, 2004, 304: 1917–1919CrossRefGoogle Scholar
  69. 69.
    Li D, Xia Y. Electrospinning of nanofibers: reinventing the wheel? Adv Mater, 2004, 16: 1151–1170CrossRefGoogle Scholar
  70. 70.
    Jiang DH, Tsai PC, Kuo CC, et al. Facile preparation of Cu/Ag core/shell electrospun nanofibers as highly stable and flexible transparent conductive electrodes for optoelectronic devices. ACS Appl Mater Interfaces, 2019, 11: 10118–10127CrossRefGoogle Scholar
  71. 71.
    Khan MQ, Kharaghani D, Nishat N, et al. The fabrications and characterizations of antibacterial PVA/Cu nanofibers composite membranes by synthesis of Cu nanoparticles from solution reduction, nanofibers reduction and immersion methods. Mater Res Express, 2019, 6: 075051CrossRefGoogle Scholar
  72. 72.
    Nima M, Shayan A, Sadrnezhaad SK, et al. Improving the multistep fabrication approach of copper nanofiber networks based transparent electrode for achieving superb conductivity and transparency. Mater Res Express, 2019, 6: 095098CrossRefGoogle Scholar
  73. 73.
    Wu H, Hu L, Rowell MW, et al. Electrospun metal nanofiber webs as high-performance transparent electrode. Nano Lett, 2010, 10: 4242–4248CrossRefGoogle Scholar
  74. 74.
    Ahire JJ, Neveling DP, Dicks LMT. Polyacrylonitrile (PAN) nanofibres spun with copper nanoparticles: an anti-Escherichia coli membrane for water treatment. Appl Microbiol Biotechnol, 2018, 102: 7171–7181CrossRefGoogle Scholar
  75. 75.
    Chinnappan A, Lee JKY, Jayathilaka WADM, et al. Fabrication of MWCNT/Cu nanofibers via electrospinning method and analysis of their electrical conductivity by four-probe method. Int J Hydrogen Energy, 2018, 43: 721–729CrossRefGoogle Scholar
  76. 76.
    Zhong W, Li Y, Zhang Q, et al. Junction-free copper wires with submicron linewidth for large-area high-performance transparent electrodes. J Mater Chem C, 2019, 7: 6144–6151CrossRefGoogle Scholar
  77. 77.
    Xu S, Sun X, Ye H, et al. Selective synthesis of copper nanoplates and nanowires via a surfactant-assisted hydrothermal process. Mater Chem Phys, 2010, 120: 1–5CrossRefGoogle Scholar
  78. 78.
    Pastoriza-Santos I, Sánchez-Iglesias A, Rodríguez-González B, et al. Aerobic synthesis of Cu nanoplates with intense plasmon resonances. Small, 2009, 5: 440–443CrossRefGoogle Scholar
  79. 79.
    Wang J, Guo X, He Y, et al. The synthesis and tribological characteristics of triangular copper nanoplates as a grease additive. RSC Adv, 2017, 7: 40249–40254CrossRefGoogle Scholar
  80. 80.
    Wang S, Oh JY, Xu J, et al. Skin-inspired electronics: an emerging paradigm. Acc Chem Res, 2018, 51: 1033–1045CrossRefGoogle Scholar
  81. 81.
    Yang J, Choi MK, Kim DH, et al. Designed assembly and integration of colloidal nanocrystals for device applications. Adv Mater, 2016, 28: 1176–1207CrossRefGoogle Scholar
  82. 82.
    Hu W, Wang R, Lu Y, et al. An elastomeric transparent composite electrode based on copper nanowires and polyurethane. J Mater Chem C, 2014, 2: 1298–1305CrossRefGoogle Scholar
  83. 83.
    Zhang FT, Xu L, Chen JH, et al. Electroless deposition metals on poly(dimethylsiloxane) with strong adhesion as flexible and stretchable conductive materials. ACS Appl Mater Interfaces, 2018, 10: 2075–2082CrossRefGoogle Scholar
  84. 84.
    Li S, Chen Y, Huang L, et al. Large-scale synthesis of well-dispersed copper nanowires in an electric pressure cooker and their application in transparent and conductive networks. Inorg Chem, 2014, 53: 4440–4444CrossRefGoogle Scholar
  85. 85.
    Deshmukh R, Calvo M, Schreck M, et al. Synthesis, spray deposition, and hot-press transfer of copper nanowires for flexible transparent electrodes. ACS Appl Mater Interfaces, 2018, 10: 20748–20754CrossRefGoogle Scholar
  86. 86.
    Hwang H, Kim A, Zhong Z, et al. Reducible-shell-derived pure-copper-nanowire network and its application to transparent conducting electrodes. Adv Funct Mater, 2016, 26: 6545–6554CrossRefGoogle Scholar
  87. 87.
    Su D, Jiu J, Suganuma K, et al. Stretchable transparent conductors based on copper nanowires and polyurethane. In: 2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO). Rome: IEEE, 2015. 242–245Google Scholar
  88. 88.
    Ding S, Jiu J, Gao Y, et al. One-step fabrication of stretchable copper nanowire conductors by a fast photonic sintering technique and its application in wearable devices. ACS Appl Mater Interfaces, 2016, 8: 6190–6199CrossRefGoogle Scholar
  89. 89.
    Ahn Y, Jeong Y, Lee D, et al. Copper nanowire-graphene core—shell nanostructure for highly stable transparent conducting electrodes. ACS Nano, 2015, 9: 3125–3133CrossRefGoogle Scholar
  90. 90.
    Im HG, Jung SH, Jin J, et al. Flexible transparent conducting hybrid film using a surface-embedded copper nanowire network: a highly oxidation-resistant copper nanowire electrode for flexible optoelectronics. ACS Nano, 2014, 8: 10973–10979CrossRefGoogle Scholar
  91. 91.
    Kholmanov IN, Domingues SH, Chou H, et al. Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes. ACS Nano, 2013, 7: 1811–1816CrossRefGoogle Scholar
  92. 92.
    Hwang C, An J, Choi BD, et al. Controlled aqueous synthesis of ultra-long copper nanowires for stretchable transparent conducting electrode. J Mater Chem C, 2016, 4: 1441–1447CrossRefGoogle Scholar
  93. 93.
    Ding S, Jiu J, Tian Y, et al. Fast fabrication of copper nanowire transparent electrodes by a high intensity pulsed light sintering technique in air. Phys Chem Chem Phys, 2015, 17: 31110–31116CrossRefGoogle Scholar
  94. 94.
    Sachse C, Weiß N, Gaponik N, et al. ITO-free, small-molecule organic solar cells on spray-coated copper-nanowire-based transparent electrodes. Adv Energy Mater, 2014, 4: 1300737CrossRefGoogle Scholar
  95. 95.
    Wang T, Wang R, Cheng Y, et al. Quasi in situ polymerization to fabricate copper nanowire-based stretchable conductor and its applications. ACS Appl Mater Interfaces, 2016, 8: 9297–9304CrossRefGoogle Scholar
  96. 96.
    Naghdi S, Rhee K, Hui D, et al. A review of conductive metal nanomaterials as conductive, transparent, and flexible coatings, thin films, and conductive fillers: different deposition methods and applications. Coatings, 2018, 8: 278CrossRefGoogle Scholar
  97. 97.
    Yang X, Sun M, Bian Y, et al. A room-temperature high-conductivity metal printing paradigm with visible-light projection lithography. Adv Funct Mater, 2019, 29: 1807615CrossRefGoogle Scholar
  98. 98.
    Vohra A, Schlingman K, Carmichael RS, et al. Membrane-interface-elastomer structures for stretchable electronics. Chem, 2018, 4: 1673–1684CrossRefGoogle Scholar
  99. 99.
    Han S, Hong S, Ham J, et al. Fast plasmonic laser nanowelding for a Cu-nanowire percolation network for flexible transparent conductors and stretchable electronics. Adv Mater, 2014, 26: 5808–5814CrossRefGoogle Scholar
  100. 100.
    Han S, Hong S, Yeo J, et al. Nanorecycling: monolithic integration of copper and copper oxide nanowire network electrode through selective reversible photothermochemical reduction. Adv Mater, 2015, 27: 6397–6403CrossRefGoogle Scholar
  101. 101.
    Zhang Y, Guo J, Xu D, et al. Synthesis of ultralong copper nanowires for high-performance flexible transparent conductive electrodes: the effects of polyhydric alcohols. Langmuir, 2018, 34: 3884–3893CrossRefGoogle Scholar
  102. 102.
    Song J, Li J, Xu J, et al. Superstable transparent conductive Cu@Cu4Ni nanowire elastomer composites against oxidation, bending, stretching, and twisting for flexible and stretchable optoelectronics. Nano Lett, 2014, 14: 6298–6305CrossRefGoogle Scholar
  103. 103.
    Mayousse C, Celle C, Carella A, et al. Synthesis and purification of long copper nanowires. Application to high performance flexible transparent electrodes with and without PEDOT:PSS. Nano Res, 2014, 7: 315–324CrossRefGoogle Scholar
  104. 104.
    Won Y, Kim A, Lee D, et al. Annealing-free fabrication of highly oxidation-resistive copper nanowire composite conductors for photovoltaics. NPG Asia Mater, 2014, 6: e105CrossRefGoogle Scholar
  105. 105.
    Krantz J, Richter M, Spallek S, et al. Solution-processed metallic nanowire electrodes as indium tin oxide replacement for thin-film solar cells. Adv Funct Mater, 2011, 21: 4784–4787CrossRefGoogle Scholar
  106. 106.
    Zhong Z, Lee H, Kang D, et al. Continuous patterning of copper nanowire-based transparent conducting electrodes for use in flexible electronic applications. ACS Nano, 2016, 10: 7847–7854CrossRefGoogle Scholar
  107. 107.
    Hu L, Kim HS, Lee JY, et al. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano, 2010, 4: 2955–2963CrossRefGoogle Scholar
  108. 108.
    Hokita Y, Kanzaki M, Sugiyama T, et al. High-concentration synthesis of sub-10-nm copper nanoparticles for application to conductive nanoinks. ACS Appl Mater Interfaces, 2015, 7: 19382–19389CrossRefGoogle Scholar
  109. 109.
    Kwon J, Cho H, Suh YD, et al. Flexible and transparent Cu electronics by low-temperature acid-assisted laser processing of Cu nanoparticles. Adv Mater Technol, 2017, 2: 1600222CrossRefGoogle Scholar
  110. 110.
    Kim Y, Lee B, Yang S, et al. Use of copper ink for fabricating conductive electrodes and RFID antenna tags by screen printing. Curr Appl Phys, 2012, 12: 473–478CrossRefGoogle Scholar
  111. 111.
    Tam SK, Ng KM. High-concentration copper nanoparticles synthesis process for screen-printing conductive paste on flexible substrate. J Nanopart Res, 2015, 17: 466CrossRefGoogle Scholar
  112. 112.
    Rong Y, Ming Y, Ji W, et al. Toward industrial-scale production of perovskite solar cells: screen printing, slot-die coating, and emerging techniques. J Phys Chem Lett, 2018, 9: 2707–2713CrossRefGoogle Scholar
  113. 113.
    Yu X, Shou W, Mahajan BK, et al. Materials, processes, and facile manufacturing for bioresorbable electronics: a review. Adv Mater, 2018, 30: 1707624CrossRefGoogle Scholar
  114. 114.
    Derby B. Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution. Annu Rev Mater Res, 2010, 40: 395–414CrossRefGoogle Scholar
  115. 115.
    Grouchko M, Kamyshny A, Magdassi S. Formation of air-stable copper-silver core-shell nanoparticles for inkjet printing. J Mater Chem, 2009, 19: 3057–3062CrossRefGoogle Scholar
  116. 116.
    Ahn BY, Duoss EB, Motala MJ, et al. Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Science, 2009, 323: 1590–1593CrossRefGoogle Scholar
  117. 117.
    Onses MS, Song C, Williamson L, et al. Hierarchical patterns of three-dimensional block-copolymer films formed by electro-hydrodynamic jet printing and self-assembly. Nat Nanotech, 2013, 8: 667–675CrossRefGoogle Scholar
  118. 118.
    Knapp CE, Metcalf EA, Mrig S, et al. Precursors for atmospheric plasma-enhanced sintering: low-temperature inkjet printing of conductive copper. ChemistryOpen, 2018, 7: 850–857CrossRefGoogle Scholar
  119. 119.
    Hon KKB, Li L, Hutchings IM. Direct writing technology—advances and developments. CIRP Ann, 2008, 57: 601–620CrossRefGoogle Scholar
  120. 120.
    Ono T, Kuboki Y, Ajishi Y, et al. Application ofmagnetic printing method to hard-disk media with double recording layers. J Appl Phys, 2003, 93: 7774–7776CrossRefGoogle Scholar
  121. 121.
    Lee YI, Choa YH. Adhesion enhancement of ink-jet printed conductive copper patterns on a flexible substrate. J Mater Chem, 2012, 22: 12517–12522CrossRefGoogle Scholar
  122. 122.
    Li D, Sutton D, Burgess A, et al. Conductive copper and nickel lines via reactive inkjet printing. J Mater Chem, 2009, 19: 3719–3724CrossRefGoogle Scholar
  123. 123.
    Raut NC, Al-Shamery K. Inkjet printing metals on flexible materials for plastic and paper electronics. J Mater Chem C, 2018, 6: 1618–1641CrossRefGoogle Scholar
  124. 124.
    Son YH, Jang JY, Kang MK, et al. Application of flash-light sintering method to flexible inkjet printing using anti-oxidant copper nanoparticles. Thin Solid Films, 2018, 656: 61–67CrossRefGoogle Scholar
  125. 125.
    Jakus AE, Taylor SL, Geisendorfer NR, et al. Metallic architectures from 3D-printed powder-based liquid inks. Adv Funct Mater, 2015, 25: 6985–6995CrossRefGoogle Scholar
  126. 126.
    Jason NN, Shen W, Cheng W. Copper nanowires as conductive ink for low-cost draw-on electronics. ACS Appl Mater Interfaces, 2015, 7: 16760–16766CrossRefGoogle Scholar
  127. 127.
    Kotikian A, Truby RL, Boley JW, et al. 3D printing of liquid crystal elastomeric actuators with spatially programed nematic order. Adv Mater, 2018, 30: 1706164CrossRefGoogle Scholar
  128. 128.
    Lin NYC, Homan KA, Robinson SS, et al. Renal reabsorption in 3D vascularized proximal tubule models. Proc Natl Acad Sci USA, 2019, 116: 5399–5404CrossRefGoogle Scholar
  129. 129.
    Valentine AD, Busbee TA, Boley JW, et al. Hybrid 3D printing of soft electronics. Adv Mater, 2017, 29: 1703817CrossRefGoogle Scholar
  130. 130.
    Cheng M, Jiang Y, Yao W, et al. Elevated-temperature 3D printing of hybrid solid-state electrolyte for Li-ion batteries. Adv Mater, 2018, 30: 1800615CrossRefGoogle Scholar
  131. 131.
    Yoo J, Jeong S, Kim S, et al. A stretchable nanowire UV-Vis-NIR photodetector with high performance. Adv Mater, 2015, 27: 1712–1717CrossRefGoogle Scholar
  132. 132.
    Tubío CR, Azuaje J, Escalante L, et al. 3D printing of a heterogeneous copper-based catalyst. J Catal, 2016, 334: 110–115CrossRefGoogle Scholar
  133. 133.
    Aziz A, Zhang T, Lin YH, et al. 1D copper nanowires for flexible printable electronics and high ampacity wires. Nanoscale, 2017, 9: 13104–13111CrossRefGoogle Scholar
  134. 134.
    Yue Y, Liu P, Zhang Z, et al. Approaching the theoretical elastic strain limit in copper nanowires. Nano Lett, 2011, 11: 3151–3155CrossRefGoogle Scholar
  135. 135.
    Peng C, Zhan Y, Lou J. Size-dependent fracture mode transition in copper nanowires. Small, 2012, 8: 1889–1894CrossRefGoogle Scholar
  136. 136.
    Toimil Molares ME, Balogh AG, Cornelius TW, et al. Fragmentation of nanowires driven by Rayleigh instability. Appl Phys Lett, 2004, 85: 5337–5339CrossRefGoogle Scholar
  137. 137.
    Richter G, Hillerich K, Gianola DS, et al. Ultrahigh strength single crystalline nanowhiskers grown by physical vapor deposition. Nano Lett, 2009, 9: 3048–3052CrossRefGoogle Scholar
  138. 138.
    Xu L, Yang Y, Hu ZW, et al. Comparison study on the stability of copper nanowires and their oxidation kinetics in gas and liquid. ACS Nano, 2016, 10: 3823–3834CrossRefGoogle Scholar
  139. 139.
    Wang X, Wang R, Shi L, et al. Synthesis of metal/bimetal nano-wires and their applications as flexible transparent electrodes. Small, 2015, 11: 4737–4744CrossRefGoogle Scholar
  140. 140.
    Ye S, Stewart IE, Chen Z, et al. How copper nanowires grow and how to control their properties. Acc Chem Res, 2016, 49: 442–451CrossRefGoogle Scholar
  141. 141.
    Kang H, Song SJ, Sul YE, et al. Epitaxial-growth-induced junction welding of silver nanowire network electrodes. ACS Nano, 2018, 12: 4894–4902CrossRefGoogle Scholar
  142. 142.
    Hong I, Roh Y, Koh JS, et al. Semipermanent copper nanowire network with an oxidation-proof encapsulation layer. Adv Mater Technol, 2019, 4: 1800422CrossRefGoogle Scholar
  143. 143.
    Zhou KL, Han CB, Li CF, et al. Highly stable transparent conductive electrodes based on silver—platinum alloy-walled hollow nanowires for optoelectronic devices. ACS Appl Mater Interfaces, 2018, 10: 36128–36135CrossRefGoogle Scholar
  144. 144.
    Wang S, Tian Y, Wang C, et al. Communication—Ag NW networks enhanced by Ni electroplating for flexible transparent electrodes. J Electrochem Soc, 2018, 165: D328–D330CrossRefGoogle Scholar
  145. 145.
    Wang S, Tian Y, Hang C, et al. Cohesively enhanced electrical conductivity and thermal stability of silver nanowire networks by nickel ion bridge joining. Sci Rep, 2018, 8: 5260CrossRefGoogle Scholar
  146. 146.
    Niu Z, Cui F, Yu Y, et al. Ultrathin epitaxial Cu@Au core-shell nanowires for stable transparent conductors. J Am Chem Soc, 2017, 139: 7348–7354CrossRefGoogle Scholar
  147. 147.
    Shang S, Kunwar A, Wang Y, et al. Synthesis of Cu@Ag core-shell nanoparticles for characterization of thermal stability and electric resistivity. Appl Phys A, 2018, 124: 492CrossRefGoogle Scholar
  148. 148.
    Wei Y, Chen S, Lin Y, et al. Cu-Ag core-shell nanowires for electronic skin with a petal molded microstructure. J Mater Chem C, 2015, 3: 9594–9602CrossRefGoogle Scholar
  149. 149.
    Lee C, Kim NR, Koo J, et al. Cu-Ag core-shell nanoparticles with enhanced oxidation stability for printed electronics. Nanotechnology, 2015, 26: 455601CrossRefGoogle Scholar
  150. 150.
    Rathmell AR, Nguyen M, Chi M, et al. Synthesis of oxidation-resistant cupronickel nanowires for transparent conducting nanowire networks. Nano Lett, 2012, 12: 3193–3199CrossRefGoogle Scholar
  151. 151.
    Koo J, Kwon S, Kim NR, et al. Ethylenediamine-enhanced oxidation resistivity of a copper surface during water-based copper nanowire synthesis. J Phys Chem C, 2016, 120: 3334–3340CrossRefGoogle Scholar
  152. 152.
    Xu M, Li F, Zhang Z, et al. Stretchable and multifunctional strain sensors based on 3D graphene foams for active and adaptive tactile imaging. Sci China Mater, 2019, 62: 555–565CrossRefGoogle Scholar
  153. 153.
    Wang S, Tian Y, Wang C, et al. Chemical and thermal robust trilayer rGO/Ag NWs/GO composite film for wearable heaters. Compos Sci Technol, 2019, 174: 76–83CrossRefGoogle Scholar
  154. 154.
    Catenacci MJ, Reyes C, Cruz MA, et al. Stretchable conductive composites from Cu-Ag nanowire felt. ACS Nano, 2018, 12: 3689–3698CrossRefGoogle Scholar
  155. 155.
    Won Y, Kim A, Yang W, et al. A highly stretchable, helical copper nanowire conductor exhibiting a stretchability of 700%. NPG Asia Mater, 2014, 6: e132CrossRefGoogle Scholar
  156. 156.
    Kumar A, Zhou C. The race to replace tin-doped indium oxide: which material will win? ACS Nano, 2010, 4: 11–14CrossRefGoogle Scholar
  157. 157.
    Tee BCK, Ouyang J. Soft electronically functional polymeric composite materials for a flexible and stretchable digital future. Adv Mater, 2018, 30: 1802560CrossRefGoogle Scholar
  158. 158.
    Wang R, Ruan H. Synthesis of copper nanowires and its application to flexible transparent electrode. J Alloys Compd, 2016, 656: 936–943CrossRefGoogle Scholar
  159. 159.
    Lipomi DJ, Tee BCK, Vosgueritchian M, et al. Stretchable organic solar cells. Adv Mater, 2011, 23: 1771–1775CrossRefGoogle Scholar
  160. 160.
    Kaltenbrunner M, White MS, Glowacki ED, et al. Ultrathin and lightweight organic solar cells with high flexibility. Nat Commun, 2012, 3: 770CrossRefGoogle Scholar
  161. 161.
    Wang X, Wang R, Zhai H, et al. Room-temperature surface modification of Cu nanowires and their applications in transparent electrodes, SERS-based sensors, and organic solar cells. ACS Appl Mater Interfaces, 2016, 8: 28831–28837CrossRefGoogle Scholar
  162. 162.
    Chen J, Zhou W, Chen J, et al. Solution-processed copper nanowire flexible transparent electrodes with PEDOT:PSS as binder, protector and oxide-layer scavenger for polymer solar cells. Nano Res, 2015, 8: 1017–1025CrossRefGoogle Scholar
  163. 163.
    Zhai H, Li Y, Chen L, et al. Copper nanowire-TiO2-polyacrylate composite electrodes with high conductivity and smoothness for flexible polymer solar cells. Nano Res, 2018, 11: 1895–1904CrossRefGoogle Scholar
  164. 164.
    Stewart IE, Rathmell AR, Yan L, et al. Solution-processed copper-nickel nanowire anodes for organic solar cells. Nanoscale, 2014, 6: 5980–5988CrossRefGoogle Scholar
  165. 165.
    Georgiou E, Choulis SA, Hermerschmidt F, et al. Printed copper nanoparticle metal grids for cost-effective ITO-free solution processed solar cells. Sol RRL, 2018, 2: 1700192CrossRefGoogle Scholar
  166. 166.
    Kim K, Kwon HC, Ma S, et al. All-solution-processed thermally and chemically stable copper-nickel core-shell nanowire-based composite window electrodes for perovskite solar cells. ACS Appl Mater Interfaces, 2018, 10: 30337–30347CrossRefGoogle Scholar
  167. 167.
    Zhai H, Wang R, Wang W, et al. Novel fabrication of copper nanowire/cuprous oxidebased semiconductor-liquid junction solar cells. Nano Res, 2015, 8: 3205–3215CrossRefGoogle Scholar
  168. 168.
    Zhao S, Li J, Cao D, et al. Recent advancements in flexible and stretchable electrodes for electromechanical sensors: strategies, materials, and features. ACS Appl Mater Interfaces, 2017, 9: 12147–12164CrossRefGoogle Scholar
  169. 169.
    Huang J, Wang H, Liang B, et al. Oriented freeze-casting fabrication of resilient copper nanowire-based aerogel as robust pie-zoresistive sensor. Chem Eng J, 2019, 364: 28–36CrossRefGoogle Scholar
  170. 170.
    Han S, Liu C, Xu H, et al. Multiscale nanowire-microfluidic hybrid strain sensors with high sensitivity and stretchability. npj Flex Electron, 2018, 2: 16CrossRefGoogle Scholar
  171. 171.
    Zhu Y, Hu Y, Zhu P, et al. Enhanced oxidation resistance and electrical conductivity copper nanowires-graphene hybrid films for flexible strain sensors. New J Chem, 2017, 41: 4950–4958CrossRefGoogle Scholar
  172. 172.
    Xu X, Wang R, Nie P, et al. Copper nanowire-based aerogel with tunable pore structure and its application as flexible pressure sensor. ACS Appl Mater Interfaces, 2017, 9: 14273–14280CrossRefGoogle Scholar
  173. 173.
    Jason NN, Wang SJ, Bhanushali S, et al. Skin inspired fractal strain sensors using a copper nanowire and graphite microflake hybrid conductive network. Nanoscale, 2016, 8: 16596–16605CrossRefGoogle Scholar
  174. 174.
    Mannsfeld SCB, Tee BCK, Stoltenberg RM, et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat Mater, 2010, 9: 859–864CrossRefGoogle Scholar
  175. 175.
    Tang Y, Gong S, Chen Y, et al. Manufacturable conducting rubber ambers and stretchable conductors from copper nanowire aerogel monoliths. ACS Nano, 2014, 8: 5707–5714CrossRefGoogle Scholar
  176. 176.
    Cheng Y, Zhang H, Wang R, et al. Highly stretchable and conductive copper nanowire based fibers with hierarchical structure for wearable heaters. ACS Appl Mater Interfaces, 2016, 8: 32925–32933CrossRefGoogle Scholar
  177. 177.
    Hussain AM, Lizardo EB, Torres Sevilla GA, et al. Ultrastretchable and flexible copper interconnect-based smart patch for adaptive thermotherapy. Adv Healthc Mater, 2015, 4: 665–673CrossRefGoogle Scholar
  178. 178.
    Matsuhisa N, Inoue D, Zalar P, et al. Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes. Nat Mater, 2017, 16: 834–840CrossRefGoogle Scholar
  179. 179.
    Kim Y, Zhu J, Yeom B, et al. Stretchable nanoparticle conductors with self-organized conductive pathways. Nature, 2013, 500: 59–63CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringNankai UniversityTianjinChina
  2. 2.National Institute for Advanced MaterialsNankai UniversityTianjinChina
  3. 3.Tianjin Key Laboratory of Metal and Molecule-Based Material ChemistryNankai UniversityTianjinChina
  4. 4.Tianjin Key Laboratory for Rare Earth Materials and ApplicationsNankai UniversityTianjinChina

Personalised recommendations