Skip to main content
Log in

Recent advances in selective C-C bond coupling for ethanol upgrading over balanced Lewis acid-base catalysts

平衡Lewis酸碱催化剂催化乙醇转化形成C-C键的 最新进展

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Ethanol is a considerable platform molecule in biomass conversion, which could be acquired in quantity through acetone-butanol-ethanol (ABE) fermentation. People have been working on the upgrading of ethanol to value added chemicals for decades. In the meantime, 1-butanol and a series of value added products have been selectively generated through C-C bond coupling. In this mini-review, we focus on the recent advances in selective C-C bond formation over balanced Lewis acid-base catalysts such as modified metal oxide, mixed metal oxide, hydroxyapatite and zeolite confined transition metal oxide catalysts. Among them, Pd-MgAlOx and Sr-based hydroxyapatite exhibit >70% 1-butanol selectivity, while ZnxZryOz and Ta-SiBEA zeolite achieve >80% of isobutene and butadiene selectivity respectively. The mechanism and reaction pathway of C-C bond formation in each reaction system are described in detail. The correlation between C-C bond coupling and the acidity/basicity of the Lewis acid-base pairs from the surface of the catalysts are also discussed.

摘要

乙醇是生物质转化过程中重要的平台分子, 可以通过ABE (丙酮-丁醇-乙醇)发酵过程大量获得. 近几十年来, 人们一直致力 于将乙醇升级为高附加值化学品. 通过C-C键生成过程, 选择性地 生成了1-丁醇和一系列高附加值产品. 本文总结了近年来在平衡 Lewis酸碱催化剂上选择性生成C-C键的研究进展, 包括金属氧化 物催化剂、混合金属氧化物催化剂、羟基磷灰石和沸石分子筛限 域过渡金属氧化物催化剂. 其中Pd-MgAlOx和Sr基羟基磷灰石催化 剂对应1-丁醇的选择性>70%, ZnxZryOz和Ta-SiBEA沸石对异丁烯 和丁二烯的选择性>80%. 本文详细介绍了各反应体系中C-C键形 成的机理和反应路径, 并讨论了C–C键生成与催化剂表面Lewis 酸、碱强度的关系.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. West RM, Liu ZY, Peter M, et al. Liquid alkanes with targeted molecular weights from biomass-derived carbohydrates. ChemSusChem, 2008, 1: 417–424

    Article  CAS  Google Scholar 

  2. Parikka M. Global biomass fuel resources. Biomass Bioenergy, 2004, 27: 613–620

    Article  Google Scholar 

  3. Angelici C, Weckhuysen BM, Bruijnincx PCA. Chemocatalytic conversion of ethanol into butadiene and other bulk chemicals. ChemSusChem, 2013, 6: 1595–1614

    Article  CAS  Google Scholar 

  4. Wu X, Fang G, Tong Y, et al. Catalytic upgrading of ethanol to n-butanol: Progress in catalyst development. ChemSusChem, 2018, 11: 71–85

    Article  CAS  Google Scholar 

  5. Wu L, Moteki T, Gokhale AA, et al. Production of fuels and chemicals from biomass: Condensation reactions and beyond. Chem, 2016, 1: 32–58

    Article  CAS  Google Scholar 

  6. Ndaba B, Chiyanzu I, Marx S. n-Butanol derived from biochemical and chemical routes: A review. Biotech Rep, 2015, 8: 1–9

    Article  CAS  Google Scholar 

  7. Rudloff J, Zaccardi JM, Richard S, et al. Analysis of pre-ignition in highly charged SI engines: Emphasis on the auto-ignition mode. Proc Combust Institute, 2013, 34: 2959–2967

    Article  CAS  Google Scholar 

  8. Campos-Fernández J, Arnal JM, Gómez J, et al. A comparison of performance of higher alcohols/diesel fuel blends in a diesel engine. Appl Energy, 2012, 95: 267–275

    Article  CAS  Google Scholar 

  9. Ordónez S, Díaz E, León M, et al. Hydrotalcite-derived mixed oxides as catalysts for different C-C bond formation reactions from bioorganic materials. Catal Today, 2011, 167: 71–76

    Article  CAS  Google Scholar 

  10. Hanspal S, Young ZD, Shou H, et al. Multiproduct steady-state isotopic transient kinetic analysis of the ethanol coupling reaction over hydroxyapatite and magnesia. ACS Catal, 2015, 5: 1737–1746

    Article  CAS  Google Scholar 

  11. Moteki T, Flaherty DW. Mechanistic insight to C-C bond formation and predictive models for cascade reactions among alcohols on Ca- and Sr-hydroxyapatites. ACS Catal, 2016, 6: 4170–4183

    Article  CAS  Google Scholar 

  12. Jordison TL, Peereboom L, Miller DJ. Impact of water on condensed phase ethanol guerbet reactions. Ind Eng Chem Res, 2016, 55: 6579–6585

    Article  CAS  Google Scholar 

  13. Sun J, Zhu K, Gao F, et al. Direct conversion of bio-ethanol to isobutene on nanosized ZnxZryOz mixed oxides with balanced acid-base sites. J Am Chem Soc, 2011, 133: 11096–11099

    Article  CAS  Google Scholar 

  14. Zhang H, Ibrahim MYS, Flaherty DW. Aldol condensation among acetaldehyde and ethanol reactants on TiO2: Experimental evidence for the kinetically relevant nucleophilic attack of enolates. J Catal, 2018, 361: 290–302

    Article  CAS  Google Scholar 

  15. Kozlowski JT, Davis RJ. Sodium modification of zirconia catalysts for ethanol coupling to 1-butanol. J Energy Chem, 2013, 22: 58–64

    Article  CAS  Google Scholar 

  16. Ndou A. Dimerisation of ethanol to butanol over solid-base catalysts. Appl Catal A-General, 2003, 251: 337–345

    Article  CAS  Google Scholar 

  17. Gines MJL, Iglesia E. Bifunctional condensation reactions of alcohols on basic oxides modified by copper and potassium. J Catal, 1998, 176: 155–172

    Article  CAS  Google Scholar 

  18. León M, Díaz E, Ordóñez S. Ethanol catalytic condensation over Mg-Al mixed oxides derived from hydrotalcites. Catal Today, 2011, 164: 436–442

    Article  CAS  Google Scholar 

  19. Rao KK, Gravelle M, Valente JS, et al. Activation of Mg-Al hydrotalcite catalysts for aldol condensation reactions. J Catal, 1998, 173: 115–121

    Article  CAS  Google Scholar 

  20. Ramasamy KK, Gray M, Job H, et al. Tunable catalytic properties of bi-functional mixed oxides in ethanol conversion to high value compounds. Catal Today, 2016, 269: 82–87

    Article  CAS  Google Scholar 

  21. Pang J, Zheng M, He L, et al. Upgrading ethanol to n-butanol over highly dispersed Ni-MgAlO catalysts. J Catal, 2016, 344: 184–193

    Article  CAS  Google Scholar 

  22. Marcu IC, Tichit D, Fajula F, et al. Catalytic valorization of bioethanol over Cu-Mg-Al mixed oxide catalysts. Catal Today, 2009, 147: 231–238

    Article  CAS  Google Scholar 

  23. Faba L, Díaz E, Ordóñez S. Gas phase acetone self-condensation over unsupported and supported Mg-Zr mixed-oxides catalysts. Appl Catal B-Environ, 2013, 142–143: 387–395

    Article  CAS  Google Scholar 

  24. Kunkes EL, Gürbüz EI, Dumesic JA. Vapour-phase C-C coupling reactions of biomass-derived oxygenates over Pd/CeZrOx catalysts. J Ratal, 2009, 266: 236–249

    CAS  Google Scholar 

  25. Iborra M, Izquierdo JF, Cunill F, et al. Application of the response surface methodology to the kinetic study of the gas-phase addition of ethanol to isobutene on a sulfonated styrene-divinylbenzene resin. Ind Eng Chem Res, 1992, 31: 1840–1848

    Article  CAS  Google Scholar 

  26. Collignon F, Poncelet G. Comparative vapor phase synthesis of ETBE from ethanol and isobutene over different acid zeolites. J Catal, 2001, 202: 68–77

    Article  CAS  Google Scholar 

  27. Shylesh S, Gokhale AA, Scown CD, et al. From sugars to wheels: The conversion of ethanol to 1,3-butadiene over metal-promoted magnesia-silicate catalysts. ChemSusChem, 2016, 9: 1462–1472

    Article  CAS  Google Scholar 

  28. Janssens W, Makshina EV, Vanelderen P, et al. Ternary Ag/MgO-SiO2 catalysts for the conversion of ethanol into butadiene. ChemSusChem, 2015, 8: 994–1008

    Article  CAS  Google Scholar 

  29. Sushkevich VL, Ivanova II. Mechanistic study of ethanol conversion into butadiene over silver promoted zirconia catalysts. Appl Catal B-Environ, 2017, 215: 36–49

    Article  CAS  Google Scholar 

  30. Nikolaev SA, Tsodikov MV, Chistyakov AV, et al. The activity of mono- and bimetallic gold catalysts in the conversion of sub- and supercritical ethanol to butanol. J Catal, 2019, 369: 501–517

    Article  CAS  Google Scholar 

  31. Yang C, Meng ZY. Bimolecular condensation of ethanol to 1-butanol catalyzed by alkali cation zeolites. J Catal, 1993, 142: 37–44

    Article  CAS  Google Scholar 

  32. Ho CR, Shylesh S, Bell AT. Mechanism and kinetics of ethanol coupling to butanol over hydroxyapatite. ACS Catal, 2016, 6: 939–948

    Article  CAS  Google Scholar 

  33. Nozière B, Córdova A. A kinetic and mechanistic study of the amino acid catalyzed aldol condensation of acetaldehyde in aqueous and salt solutions. J Phys Chem A, 2008, 112: 2827–2837

    Article  CAS  Google Scholar 

  34. Tichit D, Lutic D, Coq B, et al. The aldol condensation of acetaldehyde and heptanal on hydrotalcite-type catalysts. J Catal, 2003, 219: 167–175

    Article  CAS  Google Scholar 

  35. Frusteri F, Freni S, Chiodo V, et al. Steam reforming of bio-ethanol on alkali-doped Ni/MgO catalysts: Hydrogen production for MC fuel cell. Appl Catal A-General, 2004, 270: 1–7

    Article  CAS  Google Scholar 

  36. Gao D, Feng Y, Yin H, et al. Coupling reaction between ethanol dehydrogenation and maleic anhydride hydrogenation catalyzed by Cu/Al2O3, Cu/ZrO2, and Cu/ZnO catalysts. Chem Eng J, 2013, 233: 349–359

    Article  CAS  Google Scholar 

  37. Chieregato A, Velasquez Ochoa J, Bandinelli C, et al. On the chemistry of ethanol on basic oxides: Revising mechanisms and intermediates in the Lebedev and Guerbet reactions. ChemSusChem, 2015, 8: 377–388

    Article  CAS  Google Scholar 

  38. Inaba M, Murata K, Takahara I, et al. Production of olefins from ethanol by Fe and/or P-modified H-ZSM-5 zeolite catalysts. J Chem Technol Biotechnol, 2011, 86: 95–104

    Article  CAS  Google Scholar 

  39. Rahimi N, Karimzadeh R. Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins: A review. Appl Catal A-General, 2011, 398: 1–17

    Article  CAS  Google Scholar 

  40. Kowal A, Li M, Shao M, et al. Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2. Nat Mater, 2009, 8: 325–330

    Article  CAS  Google Scholar 

  41. Gürbüz EI, Hibbitts DD, Iglesia E. Kinetic and mechanistic assessment of alkanol/alkanal decarbonylation and deoxygenation pathways on metal catalysts. J Am Chem Soc, 2015, 137: 11984–11995

    Article  CAS  Google Scholar 

  42. Quesada J, Faba L, Díaz E, et al. Enhancement of the 1-butanol productivity in the ethanol condensation catalyzed by noble metal nanoparticles supported on Mg-Al mixed oxide. Appl Catal A-General, 2018, 563: 64–72

    Article  CAS  Google Scholar 

  43. Domok M, Toth M, Rasko J, et al. Adsorption and reactions of ethanol and ethanol-water mixture on alumina-supported Pt catalysts. Appl Catal B-Environ, 2007, 69: 262–272

    Article  CAS  Google Scholar 

  44. Christiansen MA, Mpourmpakis G, Vlachos DG. Density functional theory-computed mechanisms of ethylene and diethyl ether formation from ethanol on γ-Al2O3 (100). ACS Catal, 2013, 3: 1965–1975

    Article  CAS  Google Scholar 

  45. de Oliveira TKR, Rosset M, Perez-Lopez OW. Ethanol dehydration to diethyl ether over Cu-Fe/ZSM-5 catalysts. Catal Commun, 2018, 104: 32–36

    Article  CAS  Google Scholar 

  46. Lai S, She Y, Zhan W, et al. Performance of Fe-ZSM-5 for selective catalytic reduction of NOx with NH3: Effect of the atmosphere during the preparation of catalysts. J Mol Catal A-Chem, 2016, 424: 232–240

    Article  CAS  Google Scholar 

  47. Wang S, Goulas K, Iglesia E. Condensation and esterification reactions of alkanals, alkanones, and alkanols on TiO2: Elementary steps, site requirements, and synergistic effects of bifunctional strategies. J Catal, 2016, 340: 302–320

    Article  CAS  Google Scholar 

  48. Ogata Y, Kawasaki A. Alkoxide transfer from aluminium alkoxide to aldehyde in the Tishchenko reaction. Tetrahedron, 1969, 25: 929–935

    Article  CAS  Google Scholar 

  49. Li R, Zhang M, Yu Y. A DFT study on the Cu (111) surface for ethyl acetate synthesis from ethanol dehydrogenation. Appl Surf Sci, 2012, 258: 6777–6784

    Article  CAS  Google Scholar 

  50. Di Cosimo JI, Apestegui&a CR, Ginés MJL, et al. Structural requirements and reaction pathways in condensation reactions of alcohols on MgyAlOx, catalysts. J Catal, 2000, 190: 261–275

    Article  CAS  Google Scholar 

  51. Seligman RB. Production of Diacetone Alcohol. U.S. Patent, 2879298, 1957, 662, 323

  52. Mizutani Y, Izumi A, Watanabe S. Condensation of Ketones. Japan Patent, 70028566-B, 1970, 37

  53. Heinz JB, Tex L. Process for the Production of Neopentyl Glycol. U.S. Patent, 3920760, 1975, 502, 332

  54. Robbins LV, Porter WJ. Preparation of Higher Molecular Weight Ketones. U.S. Patent 3361828, 1962, 163, 834

  55. Birky TW, Kozlowski JT, Davis RJ. Isotopic transient analysis of the ethanol coupling reaction over magnesia. J Catal, 2013, 298: 130–137

    Article  CAS  Google Scholar 

  56. Di Cosimo JI, Diez VK, Xu M, et al. Structure and surface and catalytic properties of Mg-Al basic oxides. J Catal, 1998, 178: 499–510

    Article  CAS  Google Scholar 

  57. Young ZD, Hanspal S, Davis RJ. Aldol condensation of acetaldehyde over titania, hydroxyapatite, and magnesia. ACS Catal, 2016, 6: 3193–3202

    Article  CAS  Google Scholar 

  58. Kozlowski JT, Davis RJ. Heterogeneous catalysts for the Guerbet coupling of alcohols. ACS Catal, 2013, 3: 1588–1600

    Article  CAS  Google Scholar 

  59. Marcu IC, Tanchoux N, Fajula F, et al. Catalytic conversion of ethanol into butanol over M-Mg-Al mixed oxide catalysts (M = Pd, Ag, Mn, Fe, Cu, Sm, Yb) obtained from LDH precursors. Catal Lett, 2013, 143: 23–30

    Article  CAS  Google Scholar 

  60. Rekoske JE, Barteau MA. Kinetics, selectivity, and deactivation in the aldol condensation of acetaldehyde on anatase titanium dioxide. Ind Eng Chem Res, 2011, 50: 41–51

    Article  CAS  Google Scholar 

  61. Idriss H, Kim KS, Barteau MA. Carbon-carbon bond formation via aldolization of acetaldehyde on single crystal and polycrystalline TiO2 surfaces. J Catal, 1993, 139: 119–133

    Article  CAS  Google Scholar 

  62. Idriss H, Barteau MA. Selectivity and mechanism shifts in the reactions of acetaldehyde on oxidized and reduced TiO2 (001) surfaces. Catal Lett, 1996, 40: 147–153

    Article  CAS  Google Scholar 

  63. Luo S, Falconer JL. Aldol condensation of acetaldehyde to form high molecular weight compounds on TiO2. Catal Lett, 1999, 57: 89–93

    Article  CAS  Google Scholar 

  64. Wang S, Iglesia E. Substituent effects and molecular descriptors of reactivity in condensation and esterification reactions of oxygenates on acid-base pairs at TiO2 and ZrO2 surfaces. J Phys Chem C, 2016, 120: 21589–21616

    Article  CAS  Google Scholar 

  65. Ogo S, Onda A, Iwasa Y, et al. 1-Butanol synthesis from ethanol over strontium phosphate hydroxyapatite catalysts with various Sr/P ratios. J Catal, 2012, 296: 24–30

    Article  CAS  Google Scholar 

  66. Ogo S, Onda A, Yanagisawa K. Hydrothermal synthesis of vanadate-substituted hydroxyapatites, and catalytic properties for conversion of 2-propanol. Appl Catal A-General, 2008, 348: 129–134

    Article  CAS  Google Scholar 

  67. Ogo S, Onda A, Yanagisawa K. Selective synthesis of 1-butanol from ethanol over strontium phosphate hydroxyapatite catalysts. Appl Catal A-General, 2011, 402: 188–195

    Article  CAS  Google Scholar 

  68. Moteki T, Rowley AT, Flaherty DW. Self-terminated cascade reactions that produce methylbenzaldehydes from ethanol. ACS Catal, 2016, 6: 7278–7282

    Article  CAS  Google Scholar 

  69. Dumitriu E, Hulea V, Fechete I, et al. The aldol condensation of lower aldehydes over MFI zeolites with different acidic properties. Microporous Mesoporous Mater, 2001, 43: 341–359

    Article  CAS  Google Scholar 

  70. Lewis JD, Van de Vyver S, Román-Leshkov Y. Acid-base pairs in Lewis acidic zeolites promote direct aldol reactions by soft enolization. Angew Chem Int Ed, 2015, 54: 9835–9838

    Article  CAS  Google Scholar 

  71. Ipatiev VN. ZrJr question Iber the decasation of hhyl alcohol in the presence of various catalysts. J Prakt Chem, 1903, 2: 67–70

    Google Scholar 

  72. Kvisle S, Aguero A, Sneeden RPA. Transformation of ethanol into 1,3-butadiene over magnesium oxide/silica catalysts. Appl Catal, 1988, 43: 117–131

    Article  CAS  Google Scholar 

  73. Angelici C, Velthoen MEZ, Weckhuysen BM, et al. Effect of preparation method and CuO promotion in the conversion of ethanol into 1,3-butadiene over SiO2-MgO catalysts. ChemSusChem, 2014, 7: 2505–2515

    Article  CAS  Google Scholar 

  74. Ordomskiy VV, Sushkevich VL, Ivanova II. One-step Method for Butadiene Production. Russia Patent, WO 2012/015340. 2012

  75. Müller P, Burt SP, Love AM, et al. Mechanistic study on the Lewis acid catalyzed synthesis of 1,3-butadiene over Ta-BEA using modulated operando DRIFTS-MS. ACS Catal, 2016, 6: 6823–6832

    Article  CAS  Google Scholar 

  76. Sushkevich VL, Ivanova II. Ag-promoted ZrBEA zeolites obtained by post-synthetic modification for conversion of ethanol to butadiene. ChemSusChem, 2016, 9: 2216–2225

    Article  CAS  Google Scholar 

  77. Chae HJ, Kim TW, Moon YK, et al. Butadiene production from bioethanol and acetaldehyde over tantalum oxide-supported ordered mesoporous silica catalysts. Appl Catal B-Environ, 2014, 150–151: 596–604

    Article  CAS  Google Scholar 

  78. Sushkevich VL, Palagin D, Ivanova II. With open arms: Open sites of ZrBEA zeolite facilitate selective synthesis of butadiene from ethanol. ACS Catal, 2015, 5: 4833–4836

    Article  CAS  Google Scholar 

  79. Kyriienko PI, Larina OV, Soloviev SO, et al. High selectivity of TaSiBEA zeolite catalysts in 1,3-butadiene production from ethanol and acetaldehyde mixture. Catal Commun, 2016, 77: 123–126

    Article  CAS  Google Scholar 

  80. Yan T, Yang L, Dai W, et al. On the deactivation mechanism of zeolite catalyst in ethanol to butadiene conversion. J Catal, 2018, 367: 7–15

    Article  CAS  Google Scholar 

  81. Jiang D, Fang G, Tong Y, et al. Multifunctional Pd@UiO-66 catalysts for continuous catalytic upgrading of ethanol to n-butanol. ACS Catal, 2018, 8: 11973–11978

    Article  CAS  Google Scholar 

  82. Cirujano FG, López-Maya E, Rodríguez-Albelo M, et al. Selective one-pot two-step C-C bond formation using metal-organic frameworks with mild basicity as heterogeneous catalysts. ChemCatChem, 2017, 9: 4019–4023

    Article  CAS  Google Scholar 

  83. Jiang W, Yang J, Liu YY, et al. A stable porphyrin-based porous mog metal-organic framework as an efficient solvent-free catalyst for C-C bond formation. Inorg Chem, 2017, 56: 3036–3043

    Article  CAS  Google Scholar 

  84. Dhakshinamoorthy A, Asiri AM, Garcia H. Formation of C-C and C-heteroatom bonds by C-H activation by metal organic frameworks as catalysts or supports. ACS Catal, 2019, 9: 1081–1102

    Article  CAS  Google Scholar 

  85. Madasamy K, Kumaraguru S, Sankar V, et al. A Zn based metal organic framework as a heterogeneous catalyst for C-C bond formation reactions. New J Chem, 2019, 43: 3793–3800

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the “111 Project” of China (B18030) and Nankai University.

Author information

Authors and Affiliations

Authors

Contributions

Zhang H provided the overall concept. Dai J wrote the paper with the support from Zhang H. Zhang H revised the manuscript. All authors participated in the general discussion.

Corresponding author

Correspondence to Hongbo Zhang  (张洪波).

Additional information

Conflict of interest

The authors declare no conflict of interest.

Jingjing Dai was born in 1994. She received her BSc degree from Shaanxi University of Science & Technology, Xi’an, in 2018. Now, she is a PhD student in Prof. Hongbo Zhang’s group in Nankai University. Her research interest is focused on the platform molecule catalytic transformation based on C-C bond formation and the correlation between the Lewis acid strength as well as the pore structure of metal-organic frameworks and C-C bond formation.

Hongbo Zhang was born in 1983. He received his PhD in physical chemistry from Dalian Institute of Chemical Physics, Chinese Academy of Sciences, in 2012, supervised by Prof. Xinhe Bao and Prof. Xiulian Pan. After graduation he moved to Argonne National Laboratory (USA) as a postdoctor under the supervision of Dr. Christopher L. Marshall, working on atomic layer deposition in catalysis (2013–2015). Then he continued his research by collaboration with Robert M. Rioux at the Pennsylvania State University and David W. Flaherty in the University of Illinois at Urbana Champaign before he joined Nankai University as an independent research scientist in 2018. He is now working on upgrading of platform bio-molecules, such as furfural and ethanol etc. and small molecular activation with a combination of in-situ/operando characterizations (such as XAFS, ssNMR, FTIR etc.) and kinetic studies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, J., Zhang, H. Recent advances in selective C-C bond coupling for ethanol upgrading over balanced Lewis acid-base catalysts. Sci. China Mater. 62, 1642–1654 (2019). https://doi.org/10.1007/s40843-019-9454-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-019-9454-x

Keywords

Navigation