Skip to main content
Log in

Magnetic-brightening and control of dark exciton in CsPbBr3 perovskite

二维钙钛矿材料CsPbBr3中暗激子的磁场调控特性研究

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Exploring the fine-structure of cesium lead bromide (CsPbBr3) perovskite nanocrystals (NCs) is not only vital to fundamental understanding of recombination mechanism of exciton but also crucial for improving the performance of quantum light emitters and spintronic devices. Herein, utilizing low-temperature magneto-photoluminescence (PL) measurement, we provide the direct PL spectral feature of the dark exciton in CsPbBr3 single crystal, and demonstrate that the singlet dark exciton is located ∼20 meV below the triplet bright exciton. Furthermore, no significant polarization effect was measured from magnetic-polarization method, indicating that there is no spin selectivity for dark exciton.

摘要

二维钙钛矿材料作为21世纪最热门的材料之一, 其优异的光 电特性使其在太阳能电池、激光器等方面具有巨大的应用潜力. 二维无机钙钛矿结构CsPbX3 (X=Cl, Br, I)的激子性质对其光电特 性具有决定性的作用. 本工作针对CsPbBr3中的暗激子进行了详细 的研究, 通过施加面外磁场, 实现了对CsPbBr3中暗态激子的激活, 并发现暗态激子的荧光强度随磁场增加而呈现线性增强. 本工作 揭示了CsPbBr3暗激子的磁场调控行为和内在物理机制, 对深入理 解其光电特性具有重要的科学意义.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Green MA, Ho-Baillie A, Snaith HJ. The emergence of perovskite solar cells. Nat Photon, 2014, 8: 506–514

    CAS  Google Scholar 

  2. Zhang Q, Ha ST, Liu X, et al. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers. Nano Lett, 2014, 14: 5995–6001

    CAS  Google Scholar 

  3. Xing G, Mathews N, Lim SS, et al. Low-temperature solutionprocessed wavelength-tunable perovskites for lasing. Nat Mater, 2014, 13: 476–480

    CAS  Google Scholar 

  4. Sutherland BR, Sargent EH. Perovskite photonic sources. Nat Photon, 2016, 10: 295–302

    CAS  Google Scholar 

  5. Correa-Baena JP, Saliba M, Buonassisi T, et al. Promises and challenges of perovskite solar cells. Science, 2017, 358: 739–744

    CAS  Google Scholar 

  6. Tan ZK, Moghaddam RS, Lai ML, et al. Bright light-emitting diodes based on organometal halide perovskite. Nat Nanotech, 2014, 9: 687–692

    CAS  Google Scholar 

  7. Yuan Z, Zhou C, Tian Y, et al. One-dimensional organic lead halide perovskites with efficient bluish white-light emission. Nat Commun, 2017, 8: 14051

    CAS  Google Scholar 

  8. Zhu HL, Cheng J, Zhang D, et al. Room-temperature solutionprocessed NiOx:PbI2 nanocomposite structures for realizing highperformance perovskite photodetectors. ACS Nano, 2016, 10: 6808–6815

    CAS  Google Scholar 

  9. Veldhuis SA, Boix PP, Yantara N, et al. Perovskite materials for light-emitting diodes and lasers. Adv Mater, 2016, 28: 6804–6834

    CAS  Google Scholar 

  10. Sutton RJ, Eperon GE, Miranda L, et al. Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv Energy Mater, 2016, 6: 1502458

    Google Scholar 

  11. Wang X, Wang X, Pan A. Continuous-wave lasing in halide perovskites. Sci China Mater, 2018, 61: 1243–1244

    CAS  Google Scholar 

  12. Shoaib M, Zhang X, Wang X, et al. Directional growth of ultralong CsPbBr3 perovskite nanowires for high-performance photodetectors. J Am Chem Soc, 2017, 139: 15592–15595

    CAS  Google Scholar 

  13. Hu X, Zhou H, Jiang Z, et al. Direct vapor growth of perovskite CsPbBr3 nanoplate electroluminescence devices. ACS Nano, 2017, 11: 9869–9876

    CAS  Google Scholar 

  14. Hu X, Wang X, Fan P, et al. Visualizing carrier transport in metal halide perovskite nanoplates via electric field modulated photoluminescence imaging. Nano Lett, 2018, 18: 3024–3031

    CAS  Google Scholar 

  15. Fu Y, Zhu H, Schrader AW, et al. Nanowire lasers of formamidinium lead halide perovskites and their stabilized alloys with improved stability. Nano Lett, 2016, 16: 1000–1008

    CAS  Google Scholar 

  16. Park K, Lee JW, Kim JD, et al. Light-matter interactions in cesium lead halide perovskite nanowire lasers. J Phys Chem Lett, 2016, 7: 3703–3710

    Google Scholar 

  17. Zeng J, Zhou H, Liu R, et al. Combination of solution-phase process and halide exchange for all-inorganic, highly stable CsPbBr3 perovskite nanowire photodetector. Sci China Mater, 2018, 62: 65–73

    Google Scholar 

  18. Liao JF, Li WG, Rao HS, et al. Inorganic cesium lead halide CsPbX3 nanowires for long-term stable solar cells. Sci China Mater, 2017, 60: 285–294

    CAS  Google Scholar 

  19. Chen J, Liu D, Al-Marri MJ, et al. Photo-stability of CsPbBr3 perovskite quantum dots for optoelectronic application. Sci China Mater, 2016, 59: 719–727

    CAS  Google Scholar 

  20. Protesescu L, Yakunin S, Bodnarchuk MI, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett, 2015, 15: 3692–3696

    CAS  Google Scholar 

  21. Krieg F, Ochsenbein ST, Yakunin S, et al. Colloidal CsPbX3 (X=Cl, Br, I) nanocrystals 2.0: Zwitterionic capping ligands for improved durability and stability. ACS Energy Lett, 2018, 3: 641–646

    CAS  Google Scholar 

  22. Lin K, Xing J, Quan LN, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature, 2018, 562: 245–248

    CAS  Google Scholar 

  23. Li G, Price M, Deschler F. Research update: Challenges for highefficiency hybrid lead-halide perovskite LEDs and the path towards electrically pumped lasing. APL Mater, 2016, 4: 091507

    Google Scholar 

  24. Kim H, Zhao L, Price JS, et al. Hybrid perovskite light emitting diodes under intense electrical excitation. Nat Commun, 2018, 9: 4893

    Google Scholar 

  25. Chen J, Zhang Q, Shi J, et al. Room temperature continuous-wave excited biexciton emission in perovskite nanoplatelets via plasmonic nonlinear fano resonance. Commun Phys, 2019, 2: 80

    Google Scholar 

  26. Li X, Wu Y, Steel D, et al. An all-optical quantum gate in a semiconductor quantum dot. Science, 2003, 301: 809–811

    CAS  Google Scholar 

  27. Bonadeo NH, Erland J, Gammon D, et al. Coherent optical control of the quantum state of a single quantum dot. Science, 1998, 282: 1473–1476

    CAS  Google Scholar 

  28. Zheng F, Tan LZ, Liu S, et al. Rashba spin-orbit coupling enhanced carrier lifetime in CH3NH3PbI3. Nano Lett, 2015, 15: 7794–7800

    CAS  Google Scholar 

  29. Kepenekian M, Robles R, Katan C, et al. Rashba and Dresselhaus effects in hybrid organic-inorganic perovskites: From basics to devices. ACS Nano, 2015, 9: 11557–11567

    CAS  Google Scholar 

  30. Tamarat P, Bodnarchuk MI, Trebbia JB, et al. The ground exciton state of formamidinium lead bromide perovskite nanocrystals is a singlet dark state. Nat Mater, 2019, 18: 717–724

    CAS  Google Scholar 

  31. Tanaka K, Takahashi T, Kondo T, et al. Electronic and excitonic structures of inorganic-organic perovskite-type quantum-well crystal (C4H9NH3)2PbBr4. Jpn J Appl Phys, 2005, 44: 5923–5932

    CAS  Google Scholar 

  32. Karlsson KF, Dupertuis MA, Oberli DY, et al. Fine structure of exciton complexes in high-symmetry quantum dots: Effects of symmetry breaking and symmetry elevation. Phys Rev B, 2010, 81: 161307

    Google Scholar 

  33. Labeau O, Tamarat P, Lounis B. Temperature dependence of the luminescence lifetime of single CdSe/ZnS quantum dots. Phys Rev Lett, 2003, 90: 257404

    Google Scholar 

  34. Xu K, Vliem JF, Meijerink A. Long-lived dark exciton emission in Mn-doped CsPbCl3 perovskite nanocrystals. J Phys Chem C, 2019, 123: 979–984

    CAS  Google Scholar 

  35. Canneson D, Shornikova EV, Yakovlev DR, et al. Negatively charged and dark excitons in CsPbBr3 perovskite nanocrystals revealed by high magnetic fields. Nano Lett, 2017, 17: 6177–6183

    CAS  Google Scholar 

  36. Becker MA, Vaxenburg R, Nedelcu G, et al. Bright triplet excitons in caesium lead halide perovskites. Nature, 2018, 553: 189–193

    CAS  Google Scholar 

  37. Fu M, Tamarat P, Huang H, et al. Neutral and charged exciton fine structure in single lead halide perovskite nanocrystals revealed by magneto-optical spectroscopy. Nano Lett, 2017, 17: 2895–2901

    CAS  Google Scholar 

  38. Zhang Q, Su R, Du W, et al. Advances in small perovskite-based lasers. Small Methods, 2017, 1: 1700163

    Google Scholar 

  39. Even J. Pedestrian guide to symmetry properties of the reference cubic structure of 3D all-inorganic and hybrid perovskites. J Phys Chem Lett, 2015, 6: 2238–2242

    CAS  Google Scholar 

  40. Chen L, Li B, Zhang C, et al. Composition-dependent energy splitting between bright and dark excitons in lead halide perovskite nanocrystals. Nano Lett, 2018, 18: 2074–2080

    CAS  Google Scholar 

  41. Sapori D, Kepenekian M, Pedesseau L, et al. Quantum confinement and dielectric profiles of colloidal nanoplatelets of halide inorganic and hybrid organic-inorganic perovskites. Nanoscale, 2016, 8: 6369–6378

    CAS  Google Scholar 

  42. Zhang S, Shang Q, Du W, et al. Strong exciton-photon coupling in hybrid inorganic-organic perovskite micro/nanowires. Adv Opt Mater, 2018, 6: 1701032

    Google Scholar 

  43. Neukirch AJ, Nie W, Blancon JC, et al. Polaron stabilization by cooperative lattice distortion and cation rotations in hybrid perovskite materials. Nano Lett, 2016, 16: 3809–3816

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51602040, 51872039, 51525202 and 51902098), the Science and Technology Program of Sichuan (M112018JY0025), Scientific Research Foundation for New Teachers of UESTC (A03013023601007), and the Ministry of Science and Technology of China (MOST, 2016YFA0300802).

Author information

Authors and Affiliations

Authors

Contributions

Peng B developed the concept and designed the experiment. Peng B and Liu Z prepared the manuscript. Muhammad S, Li D and Pan A synthesized the CsPbBr3 crystal. Shi Z performed the polarization resolved PL measurements. Deng L, Bi L, Zhang LB, Zhang L, Zhou P, Chen H, Lu H and Xie J contributed to the mechanism of magnetic brightening of dark exciton.

Corresponding authors

Correspondence to Anlian Pan  (潘安练) or Bo Peng  (彭波).

Additional information

Conflict of interest

The authors declare no competing financial interests.

Bo Peng, Professor, received his BSc (Honors) from Lanzhou University in 2005, and obtained his doctor of philosophy from the Technical Institute of Physics and Chemistry, Chinese Academy of Sciences in 2010. He joined the University of Electronic Science and Technology of China in 2015 after his postdoctoral research in National University of Singapore and Nanyang Technological University between 2010 and 2015. His research focuses on the 2D ferromagnetic materials toward spintronics and valleytronics.

Zhongtai Shi, Master student, received his BSc (Honors) from the University of Electronic Science and Technology of China in 2017. His research focuses on the exciton studies of 2D perovskite CsPbBr3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Z., Muhammad, S., Deng, L. et al. Magnetic-brightening and control of dark exciton in CsPbBr3 perovskite. Sci. China Mater. 63, 1503–1509 (2020). https://doi.org/10.1007/s40843-019-1245-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-019-1245-1

Keywords

Navigation