Skip to main content
Log in

Recent research progress in the study of catalytic CO oxidation by gas phase atomic clusters

气相原子团簇催化氧化一氧化碳研究新进展

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Oxidation of CO into CO2 is a major solution to reduce CO emission into the atmosphere and to remove CO in fuel gas cleanup. Furthermore, CO oxidation serves as a prototypical reaction for heterogeneous catalysis. This review provides an overview and an update on how to study catalytic CO oxidation at a strictly molecular level by performing well-controlled gas-phase experiments in combination with quantum chemistry calculations. The advances in the unique catalytic reactivity of single-atom cluster catalysts are emphasized. The catalytically active sites and various mechanistic aspects in the redox couples N2O/CO and O2/CO for the seemingly simple oxidation reaction are described.

摘要

将一氧化碳(CO)氧化成二氧化碳(CO2)是降低大气中CO排 放和相关气体净化的有效方法, CO氧化也是非均相催化领域研究 的重要模型反应. 利用质谱实验结合量子化学理论计算, 研究原子 团簇催化氧化CO能够获得相关催化过程的微观反应机制. 本文综 述了气相原子团簇催化氧化CO的最新研究进展, 重点关注单原子 团簇催化剂独特的催化活性. 围绕CO + N2O → CO2 + N2和2CO + O2→ 2CO2两个催化反应, 本文详细讨论了催化活性位的结构特 点以及不同类型的催化反应机制.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang A, Li J, Zhang T. Heterogeneous single-atom catalysis. Nat Rev Chem, 2018, 2: 65–81

    Article  CAS  Google Scholar 

  2. Yang XF, Wang A, Qiao B, et al. Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc Chem Res, 2013, 46: 1740–1748

    Article  CAS  Google Scholar 

  3. Liu P, Zhao Y, Qin R, et al. A vicinal effect for promoting catalysis of Pd1/TiO2: supports of atomically dispersed catalysts play more roles than simply serving as ligands. Sci Bull, 2018, 63: 675–682

    Article  CAS  Google Scholar 

  4. Herzing AA, Kiely CJ, Carley AF, et al. Identification of active gold nanoclusters on iron oxide supports for CO oxidation. Science, 2008, 321: 1331–1335

    Article  CAS  Google Scholar 

  5. Judai K, Abbet S, Wörz AS, et al. Low-temperature cluster catalysis. J Am Chem Soc, 2004, 126: 2732–2737

    Article  CAS  Google Scholar 

  6. Lei Y, Mehmood F, Lee S, et al. Increased silver activity for direct propylene epoxidation via subnanometer size effects. Science, 2010, 328: 224–228

    Article  CAS  Google Scholar 

  7. Turner M, Golovko VB, Vaughan OPH, et al. Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature, 2008, 454: 981–983

    Article  CAS  Google Scholar 

  8. Vajda S, Pellin MJ, Greeley JP, et al. Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane. Nat Mater, 2009, 8: 213–216

    Article  CAS  Google Scholar 

  9. Xu H, Xu CQ, Cheng D, et al. Identification of activity trends for CO oxidation on supported transition-metal single-atom catalysts. Catal Sci Technol, 2017, 7: 5860–5871

    Article  CAS  Google Scholar 

  10. Haruta M, Kobayashi T, Sano H, et al. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0°C. Chem Lett, 1987, 16: 405–408

    Article  Google Scholar 

  11. Liu J. Catalysis by supported single metal atoms. ACS Catal, 2017, 7: 34–59

    Article  CAS  Google Scholar 

  12. Qiao B, Wang A, Yang X, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat Chem, 2011, 3: 634–641

    Article  CAS  Google Scholar 

  13. Roithova J, Schroder D. Selective activation of alkanes by gas-phase metal ions. Chem Rev, 2010, 110: 1170–1211

    Article  CAS  Google Scholar 

  14. Luo Z, Castleman Jr. AW, Khanna SN. Reactivity of metal clusters. Chem Rev, 2016, 116: 14456–14492

    Article  CAS  Google Scholar 

  15. Schwarz H. Ménage-à-trois: single-atom catalysis, mass spectrometry, and computational chemistry. Catal Sci Technol, 2017, 7: 4302–4314

    Article  CAS  Google Scholar 

  16. Tyo EC, Vajda S. Catalysis by clusters with precise numbers of atoms. Nat Nanotech, 2015, 10: 577–588

    Article  CAS  Google Scholar 

  17. Chen M, Zhang Q, Zhou M, et al. Carbon monoxide bonding with BeO and BeCO3: Surprisingly high CO stretching frequency of OCBeCO3. Angew Chem Int Ed, 2015, 54: 124–128

    Article  CAS  Google Scholar 

  18. Lang SM, Bernhardt TM. Gas phase metal cluster model systems for heterogeneous catalysis. Phys Chem Chem Phys, 2012, 14: 9255–9269

    Article  CAS  Google Scholar 

  19. Harding DJ, Fielicke A. Platinum group metal clusters: from gasphase structures and reactivities towards model catalysts. Chem Eur J, 2014, 20: 3258–3267

    Article  CAS  Google Scholar 

  20. Taylor HS. A theory of the catalytic surface. Proc R Soc A-Math Phys Eng Sci, 1925, 108: 105–111

    CAS  Google Scholar 

  21. Ertl G. Reactions at surfaces: From atoms to complexity (Nobel lecture). Angew Chem Int Ed, 2008, 47: 3524–3535

    Article  CAS  Google Scholar 

  22. Böhme DK, Schwarz H. Gas-phase catalysis by atomic and cluster metal ions: The ultimate single-site catalysts. Angew Chem Int Ed, 2005, 44: 2336–2354

    Article  CAS  Google Scholar 

  23. Taylor HS. Fourth report of the committee on contact catalysis. J Phys Chem, 1926, 30: 145–171

    Article  Google Scholar 

  24. Liu QY, He SG. Oxidation of carbon monoxide on atomic clusters. Chem J Chin Univ, 2014, 35: 665–688

    Article  CAS  Google Scholar 

  25. Li XN, Wang LN, Mou LH, et al. Catalytic CO oxidation by gasphase metal oxide clusters. J Phys Chem A, 2019, acs.jpca.9b05185

  26. Li XN, Zou XP, He SG. Metal-mediated catalysis in the gas phase: a review. Chin J Catal, 2017, 38: 1515–1527

    Article  CAS  Google Scholar 

  27. Schwarz H. Doping effects in cluster-mediated bond activation. Angew Chem Int Ed, 2015, 54: 10090–10100

    Article  CAS  Google Scholar 

  28. O’Hair RAJ. Mass spectrometry based studies of gas phase metal catalyzed reactions. Int J Mass Spectrometry, 2015, 377: 121–129

    Article  CAS  Google Scholar 

  29. Kappes MM, Staley RH. Gas-phase oxidation catalysis by transition-metal cations. J Am Chem Soc, 1981, 103: 1286–1287

    Article  CAS  Google Scholar 

  30. Blagojevic V, Jarvis MJY, Flaim E, et al. Gas-phase reduction of oxides of nitrogen with CO catalyzed by atomic transition-metal cations. Angew Chem Int Ed, 2003, 42: 4923–4927

    Article  CAS  Google Scholar 

  31. Blagojevic V, Orlova G, Bohme DK. O-atom transport catalysis by atomic cations in the gas phase: Reduction of N2O by CO. J Am Chem Soc, 2005, 127: 3545–3555

    Article  CAS  Google Scholar 

  32. Melko JJ, Ard SG, Fournier JA, et al. Iron cation catalyzed reduction of N2O by CO: gas-phase temperature dependent kinetics. Phys Chem Chem Phys, 2013, 15: 11257–11267

    Article  CAS  Google Scholar 

  33. Brönstrup M, Schröder D, Kretzschmar I, et al. Platinum dioxide cation: Easy to generate experimentally but difficult to describe theoretically. J Am Chem Soc, 2001, 123: 142–147

    Article  CAS  Google Scholar 

  34. Shi Y, Ervin KM. Catalytic oxidation of carbon monoxide by platinum cluster anions. J Chem Phys, 1998, 108: 1757–1760

    Article  CAS  Google Scholar 

  35. Blagojevic V, Bohme DK. Catalytic reduction of N2O by CO on benzene clusters of Fe+: catalytic poisoning by CO. Int J Mass Spectrometry, 2006, 254: 152–154

    Article  CAS  Google Scholar 

  36. Siu CK, Reitmeier SJ, Balteanu I, et al. Catalyst poisoning in the conversion of CO and N2O to CO2 and N2 on Pt4 in the gas phase. Eur Phys J D, 2007, 43: 189–192

    Article  CAS  Google Scholar 

  37. Johnson GE, Tyo EC, Castleman AW. Oxidation of CO by aluminum oxide cluster ions in the gas phase. J Phys Chem A, 2008, 112: 4732–4735

    Article  CAS  Google Scholar 

  38. Johnson GE, Mitric R, Tyo EC, et al. Stoichiometric zirconium oxide cations as potential building blocks for cluster assembled catalysts. J Am Chem Soc, 2008, 130: 13912–13920

    Article  CAS  Google Scholar 

  39. Tyo EC, Nossler M, Mitric R, et al. Reactivity of stoichiometric titanium oxide cations. Phys Chem Chem Phys, 2011, 13: 4243–4249

    Article  CAS  Google Scholar 

  40. Wang ZC, Dietl N, Kretschmer R, et al. Catalytic redox reactions in the CO/N2O system mediated by the bimetallic oxide-cluster couple AlVO3+/AlVO4+. Angew Chem Int Ed, 2011, 50: 12351–12354

    Article  CAS  Google Scholar 

  41. Sweeny BC, Ard SG, Shuman NS, et al. The role of non-reactive binding sites in the AlVO4+ +CO/AlVO3+ +N2O catalytic cycle. ChemPhysChem, 2018, 19: 2835–2838

    Article  CAS  Google Scholar 

  42. Debnath S, Knorke H, Schöllkopf W, et al. Experimental identification of the active site in the heteronuclear redox couples [AlVOx+/CO/N2O (x = 3, 4) by gas-phase IR spectroscopy. Angew Chem Int Ed, 2018, 57: 7448–7452

    Article  CAS  Google Scholar 

  43. Yamada A, Miyajima K, Mafuné F. Catalytic reactions on neutral Rh oxide clusters more efficient than on neutral Rh clusters. Phys Chem Chem Phys, 2012, 14: 4188–4195

    Article  CAS  Google Scholar 

  44. Wang ZC, Yin S, Bernstein ER. Catalytic oxidation of CO by N2O conducted via the neutral oxide cluster couple VO2/VO3. Phys Chem Chem Phys, 2013, 15: 10429–10434

    Article  CAS  Google Scholar 

  45. Ma JB, Wang ZC, Schlangen M, et al. On the origin of the surprisingly sluggish redox reaction of the N2O/CO couple mediated by [Y2O2]+ and [YAlO2]+ cluster ions in the gas phase. Angew Chem Int Ed, 2013, 52: 1226–1230

    Article  CAS  Google Scholar 

  46. Sun X, Zhou S, Yue L, et al. On the remarkable role of the nitrogen ligand in the gas-phase redox reaction of the N2O/CO couple catalyzed by [NbN]+. Angew Chem Int Ed, 2019, 58: 3635–3639

    Article  CAS  Google Scholar 

  47. Sun X, Zhou S, Yue L, et al. Metal-free, room-temperature oxygen-atom transfer in the N2O/CO redox couple as catalyzed by [Si2Ox]+ (x = 2–5). Angew Chem Int Ed, 2017, 56: 9990–9993

    Article  CAS  Google Scholar 

  48. Yin S, Wang Z, Bernstein ER. O-atom transport catalysis by neutral manganese oxide clusters in the gas phase: Reactions with CO, C2H4, NO2, and O2. J Chem Phys, 2013, 139: 084307

    Article  CAS  Google Scholar 

  49. Wallace WT, Whetten RL. Coadsorption of CO and O2 on selected gold clusters: Evidence for efficient room-temperature CO2 generation. J Am Chem Soc, 2002, 124: 7499–7505

    Article  CAS  Google Scholar 

  50. Häkkinen H, Landman U. Gas-phase catalytic oxidation of CO by Au2. J Am Chem Soc, 2001, 123: 9704–9705

    Article  CAS  Google Scholar 

  51. Socaciu LD, Hagen J, Bernhardt TM, et al. Catalytic CO oxidation by free Au2: Experiment and theory. J Am Chem Soc, 2003, 125: 10437–10445

    Article  CAS  Google Scholar 

  52. Socaciu LD, Hagen J, Le Roux J, et al. Strongly cluster size dependent reaction behavior of CO with O2 on free silver cluster anions. J Chem Phys, 2004, 120: 2078–2081

    Article  CAS  Google Scholar 

  53. Xie Y, Dong F, Bernstein ER. Experimental and theory studies of the oxidation reaction of neutral gold carbonyl clusters in the gas phase. Catal Today, 2011, 177: 64–71

    Article  CAS  Google Scholar 

  54. Lang SM, Fleischer I, Bernhardt TM, et al. Pd6O4+: An oxidation resistant yet highly catalytically active nano-oxide cluster. J Am Chem Soc, 2012, 134: 20654–20659

    Article  CAS  Google Scholar 

  55. Li ZY, Yuan Z, Li XN, et al. CO oxidation catalyzed by single gold atoms supported on aluminum oxide clusters. J Am Chem Soc, 2014, 136: 14307–14313

    Article  CAS  Google Scholar 

  56. Li XN, Yuan Z, Meng JH, et al. Catalytic CO oxidation on single Pt-atom doped aluminum oxide clusters: electronegativity-ladder effect. J Phys Chem C, 2015, 119: 15414–15420

    Article  CAS  Google Scholar 

  57. Chen JJ, Li XN, Chen Q, et al. Neutral Au1-doped cluster catalysts AuTi2O3-6 for CO oxidation by O2. J Am Chem Soc, 2019, 141: 2027–2034

    Article  CAS  Google Scholar 

  58. Ou S, Chen J, Li X, et al. CO oxidation by neutral gold-vanadium oxide clusters. Chin J Chem Phys, 2019, 32: 207–212

    Article  CAS  Google Scholar 

  59. Wang LN, Li XN, Jiang LX, et al. Catalytic CO oxidation by O2 mediated by noble-metal-free cluster anions Cu2VO3−5. Angew Chem Int Ed, 2018, 57: 3349–3353

    Article  CAS  Google Scholar 

  60. Zou XP, Wang LN, Li XN, et al. Noble-metal-free single-atom catalysts CuAl4O7−9for CO oxidation by O2. Angew Chem Int Ed, 2018, 57: 10989–10993

    Article  CAS  Google Scholar 

  61. Wang LN, Li XN, He SG. Catalytic CO oxidation by noble-metal-free Ni2VO4,5 clusters: A CO self-promoted mechanism. J Phys Chem Lett, 2019, 10: 1133–1138

    Article  CAS  Google Scholar 

  62. Wang LN, Chen JJ, Li XN, et al. Doping effects on the reactivity of the MVO5 (M = V-Zn) clusters in CO oxidation reaction. J Phys Chem C, 2019, 123: 14180–14186

    Article  CAS  Google Scholar 

  63. Prather MJ. Time scales in atmospheric chemistry: coupled perturbations to N2O, NOy, and O3. Science, 1998, 279: 1339–1341

    Article  CAS  Google Scholar 

  64. Ravishankara AR, Daniel JS, Portmann RW. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science, 2009, 326: 123–125

    Article  CAS  Google Scholar 

  65. Robertson A, Overpeck J, Rind D, et al. Hypothesized climate forcing time series for the last 500 years. J Geophys Res, 2001, 106: 14783–14803

    Article  Google Scholar 

  66. Koyanagi GK, Bohme DK. Oxidation reactions of lanthanide cations with N2O and O2: Periodicities in reactivity. J Phys Chem A, 2001, 105: 8964–8968

    Article  CAS  Google Scholar 

  67. Lavrov VV, Blagojevic V, Koyanagi GK, et al. Gas-phase oxidation and nitration of first-, second-, and third-row atomic cations in reactions with nitrous oxide: Periodicities in reactivity. J Phys Chem A, 2004, 108: 5610–5624

    Article  CAS  Google Scholar 

  68. Ushakov VG, Troe J, Johnson RS, et al. Statistical modeling of the reactions Fe+ + N2O → FeO+ + N2 and FeO+ + CO → Fe+ + CO2. Phys Chem Chem Phys, 2015, 17: 19700–19708

    Article  CAS  Google Scholar 

  69. Balaj OP, Balteanu I, Rossteuscher TTJ, et al. Catalytic oxidation of CO with N2O on gas-phase platinum clusters. Angew Chem Int Ed, 2004, 43: 6519–6522

    Article  CAS  Google Scholar 

  70. Balteanu I, Petru Balaj O, Beyer MK, et al. Reactions of platinum clusters 195Ptn ±, n = 1–24, with N2O studied with isotopically enriched platinum. Phys Chem Chem Phys, 2004, 6: 2910–2913

    Article  CAS  Google Scholar 

  71. Barabás J, Höltzl T. Reaction of N2O and CO catalyzed with small copper clusters: Mechanism and design. J Phys Chem A, 2016, 120: 8862–8870

    Article  CAS  Google Scholar 

  72. Nössler M, Mitrić R, Bonacić-Koutecký V, et al. Generation of oxygen radical centers in binary neutral metal oxide clusters for catalytic oxidation reactions. Angew Chem Int Ed, 2010, 49: 407–410

    Article  CAS  Google Scholar 

  73. Johnson GE, Mitric R, Nössler M, et al. Influence of charge state on catalytic oxidation reactions at metal oxide clusters containing radical oxygen centers. J Am Chem Soc, 2009, 131: 5460–5470

    Article  CAS  Google Scholar 

  74. Ding XL, Wu XN, Zhao YX, et al. C-H bond activation by oxygen-centered radicals over atomic clusters. Acc Chem Res, 2012, 45: 382–390

    Article  CAS  Google Scholar 

  75. Wang ZC, Wu XN, Zhao YX, et al. Room-temperature methane activation by a bimetallic oxide cluster AlVO4+. Chem Phys Lett, 2010, 489: 25–29

    Article  CAS  Google Scholar 

  76. Gao H. DFT study of the adsorption properties of single Pt, Pd, Ag, In and Sn on the γ-Al2O3 (110) surface. Chem Phys Lett, 2016, 657: 11–17

    Article  CAS  Google Scholar 

  77. Gao G, Wei S, Duan X, et al. Influence of charge state on catalytic properties of PtAu(CO)n in reduction of SO2 by CO. Chem Phys Lett, 2015, 625: 128–131

    Article  CAS  Google Scholar 

  78. Bürgel C, Reilly NM, Johnson GE, et al. Influence of charge state on the mechanism of CO oxidation on gold clusters. J Am Chem Soc, 2008, 130: 1694–1698

    Article  CAS  Google Scholar 

  79. Bernstein ER. Neutral cluster mass spectrometry. Int J Mass Spectrometry, 2015, 377: 248–262

    Article  CAS  Google Scholar 

  80. Wang ZC, Yin S, Bernstein ER. Gas-phase neutral binary oxide clusters: distribution, structure, and reactivity toward CO. J Phys Chem Lett, 2012, 3: 2415–2419

    Article  CAS  Google Scholar 

  81. Wang ZC, Yin S, Bernstein ER. Generation and reactivity of putative support systems, Ce-Al neutral binary oxide nanoclusters: CO oxidation and C-H bond activation. J Chem Phys, 2013, 139: 194313

    Article  CAS  Google Scholar 

  82. Jones J, Xiong H, DeLaRiva AT, et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science, 2016, 353: 150–154

    Article  CAS  Google Scholar 

  83. Moses-DeBusk M, Yoon M, Allard LF, et al. CO oxidation on supported single Pt atoms: Experimental and ab Initio density functional studies of CO interaction with Pt atom on θ-Al2O3 (010) surface. J Am Chem Soc, 2013, 135: 12634–12645

    Article  CAS  Google Scholar 

  84. Liang JX, Lin J, Yang XF, et al. Theoretical and experimental investigations on single-atom catalysis: Ir1/FeOx for CO oxidation. J Phys Chem C, 2014, 118: 21945–21951

    Article  CAS  Google Scholar 

  85. Lin J, Wang A, Qiao B, et al. Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction. J Am Chem Soc, 2013, 135: 15314–15317

    Article  CAS  Google Scholar 

  86. Li F, Li L, Liu X, et al. High-performance Ru1/CeO2 single-atom catalyst for CO oxidation: A computational exploration. ChemPhysChem, 2016, 17: 3170–3175

    Article  CAS  Google Scholar 

  87. Wang L, Zhang W, Wang S, et al. Atomic-level insights in optimizing reaction paths for hydroformylation reaction over Rh/CoO single-atom catalyst. Nat Commun, 2016, 7: 14036

    Article  CAS  Google Scholar 

  88. Ghosh TK, Nair NN. Rh1/γ-Al2O3 single-atom catalysis of O2 activation and CO oxidation: Mechanism, effects of hydration, oxidation state, and cluster size. ChemCatChem, 2013, 5: 1811–1821

    Article  CAS  Google Scholar 

  89. Liu P, Zhao Y, Qin R, et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science, 2016, 352: 797–800

    Article  CAS  Google Scholar 

  90. Li XN, Li ZY, Li HF, et al. Multiple CO oxidation promoted by Au2 dimers in Au2TiO4cluster anions. Chem Eur J, 2016, 22: 9024–9029

    Article  CAS  Google Scholar 

  91. Wang LN, Li ZY, Liu QY, et al. CO oxidation promoted by the gold dimer in Au2VO3 and Au2VO4 clusters. Angew Chem Int Ed, 2015, 54: 11720–11724

    Article  CAS  Google Scholar 

  92. Islam I, Khandy SA, Zaman MB, et al. Effect of 3d transition metal doping (Co, Ni and Cu) on structural, optical, morphological and dielectric properties of sol-gel assisted auto-combusted Mg0.95Mn0.05O nanoparticles. J Mater Sci-Mater Electron, 2018, 29: 3952–3956

    Article  CAS  Google Scholar 

  93. Trung Tran SB, Choi HS, Oh SY, et al. Iron-doped ZnO as a support for Pt-based catalysts to improve activity and stability: Enhancement of metal-support interaction by the doping effect. RSC Adv, 2018, 8: 21528–21533

    Article  CAS  Google Scholar 

  94. Yang S, Lee H. Determining the catalytic activity of transition metal-doped TiO2 nanoparticles using surface spectroscopic analysis. Nanoscale Res Lett, 2017, 12: 582

    Article  CAS  Google Scholar 

  95. Figueroba A, Bruix A, Kovács G, et al. Metal-doped ceria nanoparticles: Stability and redox processes. Phys Chem Chem Phys, 2017, 19: 21729–21738

    Article  CAS  Google Scholar 

  96. Fu L, Yang H, Hu Y, et al. Tailoring mesoporous γ-Al2O3 properties by transition metal doping: A combined experimental and computational study. Chem Mater, 2017, 29: 1338–1349

    Article  CAS  Google Scholar 

  97. Zhao YX, Wu XN, Ma JB, et al. Characterization and reactivity of oxygen-centred radicals over transition metal oxide clusters. Phys Chem Chem Phys, 2011, 13: 1925

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21773253).

Author information

Authors and Affiliations

Authors

Contributions

He SG proposed the topic and outline of the manuscript. Wang LN collected the related information and drafted the manuscript. Li XN gave some valuable comments.

Corresponding author

Correspondence to Sheng-Gui He  (何圣贵).

Additional information

Conflict of interest

The authors declare no conflict of interest.

Li-Na Wang received her BSc degree in chemistry from Hefei Normal University in 2013, her MSc degree in chemistry from South China University of Technology in 2016, and her PhD degree from the Institute of Chemistry, Chinese Academy of Sciences (ICCAS) in 2019. Her research interests are experimental and theoretical investigations on the reactions of noble-metal-free metal oxide clusters in catalytic CO oxidation.

Xiao-Na Li received her BSc degree in chemistry from Jilin Normal University in 2004, MSc degree in chemistry from Jilin University in 2007, and PhD degree in 2010 from Changchun Institute of Applied Chemistry, Chinese Academy of Sciences. She joined the ICCAS in January 2011. Her research interests are experimental and theoretical studies on the reactions of metal oxide clusters in catalytic CO oxidation.

Sheng-Gui He received his BSc degree in physics and PhD degree in chemistry from the University of Science and Technology of China in 1997 and 2002, respectively. After the postdoctoral experience at the University of Kentucky (2002-2005) with Prof. Dennis J. Clouthier and Colorado State University (2005-2007) with Prof. Elliot R. Bernstein, he joined ICCAS in January 2007. His research interests are focused on experimental and theoretical studies on reactive intermediates including free radicals and atomic clusters.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, LN., Li, XN. & He, SG. Recent research progress in the study of catalytic CO oxidation by gas phase atomic clusters. Sci. China Mater. 63, 892–902 (2020). https://doi.org/10.1007/s40843-019-1206-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-019-1206-2

Keywords

Navigation