Skip to main content
Log in

The equivalent and aliovalent dopants boosting the thermoelectric properties of YbMg2Sb2

通过等价和异价元素掺杂促进YbMg2Sb2热电性能提升

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Antimony-based Zintl compounds AM2Sb2 (A=Ca, Sr, Ba, Yb, Eu; M=Mg, Zn, Cd, Mn), which enable a broad range of manipulation on electrical and thermal transport properties, are considered as an important class of thermoelectric materials. Phonon and carrier transport engineering were realized in YbMg2Sb2via equivalent and alio-valent substitution of Zn and Ag, respectively. The room-temperature thermal conductivity reduces from 1.96 to 1.15 W m−1 K−1 for YbMg2-xZnxSb2 due to the mass and strain fluctuation through the formation of the absolute solid solution of YbMg2Sb2-YbZn2Sb2. Furthermore, the carrier concentration has been further optimized by Ag doping (from 0.42×1019 to 7.72×1019 cm−3 at room temperature), and thus the electrical conductivity and the power factor are enhanced effectively. The integrated aspects make the dimensionless figure of merit (zT) reach 0.48 at 703 K, which is 60% higher than the pristine YbMgZnSb2 sample.

摘要

摘要由于其电热输运性能便于调控, 锑基Zintl相化合物AM2Sb2 (A=Ca, Sr, Ba, Yb, Eu; M=Mg, Zn, Cd, Mn)被认为是一类重要的热电材料. 本文通过在YbMg2Sb2中掺入等价的元素Zn和异价元素Ag, 实现了声子和载流子的输运性能优化. 首先, 体系YbMg2−x-ZnxSb2室温热导率从1.96 W m−1 K−1降低至1.15 W m−1 K−1, 这是由于形成YbMg2Sb2-YbZn2Sb2的固溶体带来的合金化散射效应. 其次, 掺杂Ag可以增加载流子浓度, 其数值在室温下从0.42×1019 cm−3 提升至7.72×1019 cm−3, 从而有效地提高了电导率和功率因子. 通过综合两方面的协同效应使得体系zT在703 K时达到0.48, 比纯样品YbMgZnSb2高60%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tritt TM. Thermoelectric materials: Holey and unholey semiconductors. Science, 1999, 283: 804–805

    Article  CAS  Google Scholar 

  2. Zhang X, Zhao LD. Thermoelectric materials: Energy conversion between heat and electricity. J Materiomics, 2015, 1: 92–105

    Article  Google Scholar 

  3. DiSalvo FJ. Thermoelectric cooling and power generation. Science, 1999, 285: 703–706

    Article  CAS  Google Scholar 

  4. Zhang Q, Sun Y, Xu W, et al. Organic thermoelectric materials: Emerging green energy materials converting heat to electricity directly and efficiently. Adv Mater, 2014, 26: 6829–6851

    Article  CAS  Google Scholar 

  5. Toberer ES, May AF, Snyder GJ. Zintl chemistry for designing high efficiency thermoelectric materials. Chem Mater, 2010, 22: 624–634

    Article  CAS  Google Scholar 

  6. Dresselhaus M, Chen G, Tang M, et al. New directions for low-dimensional thermoelectric materials. Adv Mater, 2017, 19: 1043–1053

    Article  Google Scholar 

  7. Wei TR, Qin Y, Deng T, et al. Copper chalcogenide thermoelectric materials. Sci China Mater, 2019, 62: 8–24

    Article  CAS  Google Scholar 

  8. Cao QG, Zhang H, Tang MB, et al. Zintl phase Yb1-xCaxCd2Sb2 with tunable thermoelectric properties induced by cation substitution. J Appl Phys, 2010, 107: 053714

    Article  Google Scholar 

  9. Guo K, Cao Q, Zhao J. Zintl phase compounds AM2Sb2 (A=Ca, Sr, Ba, Eu, Yb; M=Zn, Cd) and their substitution variants: A class of potential thermoelectric materials. J Rare Earths, 2013, 31: 1029–1038

    Article  CAS  Google Scholar 

  10. Wang X, Li W, Wang C, et al. Single parabolic band transport in p-type EuZn2Sb2 thermoelectrics. J Mater Chem A, 2017, 5: 24185–24192

    Article  CAS  Google Scholar 

  11. Toberer ES, May AF, Melot BC, et al. Electronic structure and transport in thermoelectric compounds AZn2Sb2 (A=Sr, Ca, Yb, Eu). Dalton Trans, 2010, 39: 1046–1054

    Article  CAS  Google Scholar 

  12. Guo K, Cao QG, Feng XJ, et al. Enhanced thermoelectric figure of merit of Zintl phase YbCd2-xMnxSb2 by chemical substitution. Eur J Inorg Chem, 2011, 2011(26): 4043–4048

    Article  CAS  Google Scholar 

  13. Shuai J, Mao J, Song S, et al. Recent progress and future challenges on thermoelectric Zintl materials. Mater Today Phys, 2017, 1: 74–95

    Article  Google Scholar 

  14. Shuai J, Geng H, Lan Y, et al. Higher thermoelectric performance of Zintl phases (Eu0.5Yb0.5)1-xCaxMg2Bi2 by band engineering and strain fluctuation. Proc Natl Acad Sci USA, 2016, 113: E4125–E4132

    Article  CAS  Google Scholar 

  15. Takagiwa Y, Sato Y, Zevalkink A, et al. Thermoelectric properties of EuZn2Sb2 Zintl compounds: zT enhancement through Yb substitution for Eu. J Alloys Compd, 2017, 703: 73–79

    Article  CAS  Google Scholar 

  16. Gascoin F, Ottensmann S, Stark D, et al. Zintl phases as thermoelectric materials: Tuned transport properties of the compounds CaxYb1-xZn2Sb2. Adv Funct Mater, 2005, 15: 1860–1864

    Article  CAS  Google Scholar 

  17. Zevalkink A, Zeier WG, Cheng E, et al. Nonstoichiometry in the Zintl Phase Yb1-dZn2 Sb2 as a route to thermoelectric optimization. Chem Mater, 2014, 26: 5710–5717

    Article  CAS  Google Scholar 

  18. Zhang J, Song L, Pedersen SH, et al. Discovery of high-performance low-cost n-type Mg3Sb2-based thermoelectric materials with multi-valley conduction bands. Nat Commun, 2017, 8: 13901

    Article  CAS  Google Scholar 

  19. Wang XJ, Tang MB, Chen HH, et al. Synthesis and high thermoelectric efficiency of Zintl phase YbCd2-xZnxSb2. Appl Phys Lett, 2009, 94: 092106

    Article  Google Scholar 

  20. Ohno S, Imasato K, Anand S, et al. Phase boundary mapping to obtain n-type Mg3Sb2-based thermoelectrics. Joule, 2018, 2: 141–154

    Article  CAS  Google Scholar 

  21. Song L, Zhang J, Iversen BB. Simultaneous improvement of power factor and thermal conductivity via Ag doping in p-type Mg3Sb2 thermoelectric materials. J Mater Chem A, 2017, 5: 4932–4939

    Article  CAS  Google Scholar 

  22. Shuai J, Liu Z, Kim HS, et al. Thermoelectric properties of Bi-based Zintl compounds Ca1-xYbxMg2Bi2. J Mater Chem A, 2016, 4: 4312–4320

    Article  CAS  Google Scholar 

  23. Wood M, Aydemir U, Ohno S, et al. Observation of valence band crossing: The thermoelectric properties of CaZn2Sb2-CaMg2Sb2 solid solution. J Mater Chem A, 2018, 6: 9437–9444

    Article  CAS  Google Scholar 

  24. Akselrud L, Grin Y. WinCSD: Software package for crystal-lographic calculations (Version 4). J Appl Crystlogr, 2014, 47: 803–805

    Article  CAS  Google Scholar 

  25. Mewis A. AB2X2-Verbindungen im CaAl2Si2-Typ, IV[1] Zur Struktur der Verbindungen CaZn2Sb2, CaCd2Sb2, SrZn2Sb2 und SrCd2Sb2/AB2X2 Compounds with the CaAl2Si2 Structure, IV[1] The Crystal Structure of CaZn2Sb2, CaCd2Sb2, SrZn2Sb2, and SrCd2Sb2. In: Zeitschrift für Naturforschung B, 1978, 382

    Google Scholar 

  26. Burdett JK, Miller GJ. Fragment formalism in main-group solids: Applications to aluminum boride (AlB2), calcium aluminum sili-cide (CaAl2Si2), barium-aluminum (BaAl4), and related materials. Chem Mater, 1990, 2: 12–26

    Article  CAS  Google Scholar 

  27. Pomrehn GS, Zevalkink A, Zeier WG, et al. Defect-controlled electronic properties in AZn2Sb2 zintl phases. Angew Chem Int Ed, 2014, 53: 3422–3426

    Article  CAS  Google Scholar 

  28. Goldsmid HJ, Sharp JW. Estimation of the thermal band gap of a semiconductor from seebeck measurements. J Elec Materi, 1999, 28: 869–872

    Article  CAS  Google Scholar 

  29. Klüfers P, Neumann H, Mewis A, et al. AB2X2-Verbindungen im CaAl2Si2-Typ, VIII[1]/AB2X2 Compounds with the CaAl2Si2 Structure, VIII[1]. In: Zeitschrift für Naturforschung B, 1980, 1317

    Google Scholar 

  30. Zhang H, Zhao JT, Grin Y, et al. A new type of thermoelectric material, EuZn2Sb2. J Chem Phys, 2008, 129: 164713

    Article  Google Scholar 

  31. Zheng L, Li W, Wang X, et al. Alloying for orbital alignment enables thermoelectric enhancement of EuCd2Sb2. J Mater Chem A, 2019, 7: 12773–12778

    Article  CAS  Google Scholar 

  32. Artmann A, Mewis A, Roepke M, et al.AM2X2-verbindungen mit CaAl2Si2-struktur. XI. Struktur und eigenschaften der verbindungen ACd2X2 (A: Eu, Yb; X: P, As, Sb). Z Anorg Allg Chem, 1996, 622: 679–682

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2018YFA0702100), the National Natural Science Foundation of China (21771123), the Programme of Introducing Talents of Discipline to Universities (D16002), the Science and Technology Commission of Shanghai Municipality (15DZ2260300), and Key Laboratory of Optoelectronic Materials Chemistry and Physics, Chinese Academy of Sciences (2008DP173016).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Yang X wrote this manuscript with the support from Li Y and Zhao J-T. Guo K designed the experiments and analyzed the data. Gu Y performed the experiments. Zhang J did the property measurements. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Kai Guo  (郭凯) or Jiye Zhang  (张继业).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Xinxin Yang received her Bachelor’s degree from Central South University in 1999, and PhD degree from Shanghai Institute of Ceramics, Chinese Academy of Sciences under the supervisor of Prof. Jing-Tai Zhao in 2013. Her research interest focuses on the crystal structure and physical properties of intermetallic compounds.

Kai Guo received his Bachelor’s degree from Huazhong University of Science and Technology in 2006, and PhD from Shanghai Institute of Ceramics, Chinese Academy of Sciences under the supervision of Prof. Jing-Tai Zhao in 2011. He worked on high-pressure synthesis as a postdoctor in Max-Planck Institute for Chemical Physics of solids. His research interest focuses on the structure-property relationship of thermoelectric materials.

Jiye Zhang obtained his PhD degree from the Institute of Physics, Chinese Academy of Sciences in 2008. Now, he is an associate professor of the School of Materials Science and Engineering, Shanghai University. His main research interests focus on exotic thermal and electrical transport behaviors in thermoelectric materials from the interplay among spin, charge and lattice of degrees of freedom.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Gu, Y., Li, Y. et al. The equivalent and aliovalent dopants boosting the thermoelectric properties of YbMg2Sb2. Sci. China Mater. 63, 437–443 (2020). https://doi.org/10.1007/s40843-019-1199-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-019-1199-4

Keywords

Navigation