Skip to main content
Log in

Miracles of molecular uniting

奇妙的分子聚集效应

  • Perspectives
  • Published:
Science China Materials Aims and scope Submit manuscript

摘要

有机材料的宏观性质是分子聚集效应的客观体现, 不仅取决于单个分子的结构, 而且与整个分子的聚集形式密切相关. 通过对分子聚集态行为的有效调控, 科学家们发现了一些完全不同于单个分子特性的聚集态发光现象, 包括发光强度、 颜色、 形式以及激发过程的差异. 本文对这些有趣的聚集态发光材料进行了简要的综述, 系统分析了分子聚集模式和分子间相互作用对材料发光性能的影响, 并介绍了“MUSIC”的理念, 以音乐创作形象化材料设计, 强调分子聚集态行为的重要性.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Mei J, Leung NLC, Kwok RTK, et al. Aggregation-induced emission: Together we shine, united we soar! Chem Rev, 2015, 115: 11718–11940

    CAS  Google Scholar 

  2. Jiang N, Shen T, Sun JZ, et al. Aggregation-induced emission: right there shining. Sci China Mater, 2019, 62: 1227–1235

    Google Scholar 

  3. Li Q, Li Z. The strong light-emission materials in the aggregated state: What happens from a single molecule to the collective group. Adv Sci, 2017, 4: 1600484

    Google Scholar 

  4. Li J, Shen P, Zhao Z, et al. Through-space conjugation: A thriving alternative for optoelectronic materials. CCS Chem, 2019, 1: 181–196

    Google Scholar 

  5. Feng G, Liu B. Aggregation-induced emission (AIE) dots: Emerging theranostic nanolights. Acc Chem Res, 2018, 51: 1404–1414

    CAS  Google Scholar 

  6. Mei J, Hong Y, Lam JWY, et al. Aggregation-induced emission: The whole is more brilliant than the parts. Adv Mater, 2014, 26: 5429–5479

    CAS  Google Scholar 

  7. Yang J, Chi Z, Zhu W, et al. Aggregation-induced emission: a coming-of-age ceremony at the age of eighteen. Sci China Chem, 2019, 62: 1090–1098

    CAS  Google Scholar 

  8. Fu W, Yan C, Guo Z, et al. Rational design of near-infrared aggregation-induced-emission-active probes: In situ mapping of amyloid-β plaques with ultrasensitivity and high-fidelity. J Am Chem Soc, 2019, 141: 3171–3177

    CAS  Google Scholar 

  9. Shao A, Xie Y, Zhu S, et al. Far-red and near-IR AIE-active fluorescent organic nanoprobes with enhanced tumor-targeting efficacy: Shape-specific effects. Angew Chem Int Ed, 2015, 54: 7275–7280

    CAS  Google Scholar 

  10. Chen X, Luo W, Ma H, et al. Prevalent intrinsic emission from nonaromatic amino acids and poly(amino acids). Sci China Chem, 2018, 61: 351–359

    CAS  Google Scholar 

  11. Zhou Q, Cao B, Zhu C, et al. Clustering-triggered emission of nonconjugated polyacrylonitrile. Small, 2016, 12: 6586–6592

    CAS  Google Scholar 

  12. Zhu S, Song Y, Shao J, et al. Non-conjugated polymer dots with crosslink-enhanced emission in the absence of fluorophore units. Angew Chem Int Ed, 2015, 54: 14626–14637

    CAS  Google Scholar 

  13. Geng T, Feng T, Ma Z, et al. Insights into supramolecular-interaction-regulated piezochromic carbonized polymer dots. Nanoscale, 2019, 11: 5072–5079

    CAS  Google Scholar 

  14. Zhou X, Luo W, Nie H, et al. Oligo(maleic anhydride)s: a platform for unveiling the mechanism of clusteroluminescence of non-aromatic polymers. J Mater Chem C, 2017, 5: 4775–4779

    CAS  Google Scholar 

  15. Zhao E, Lam JWY, Meng L, et al. Poly[(maleic anhydride)-alt-(vinyl acetate)]: A pure oxygenic nonconjugated macromolecule with strong light emission and solvatochromic effect. Macromolecules, 2015, 48: 64–71

    CAS  Google Scholar 

  16. Figueira-Duarte TM, Müllen K. Pyrene-based materials for organic electronics. Chem Rev, 2011, 111: 7260–7314

    CAS  Google Scholar 

  17. Jung HS, Park M, Han DY, et al. Cu2+ ion-induced self-assembly of pyrenylquinoline with a pyrenyl excimer formation. Org Lett, 2009, 11: 3378–3381

    CAS  Google Scholar 

  18. Han G, Kim D, Park Y, et al. Excimers beyond pyrene: A far-red optical proximity reporter and its application to the label-free detection of DNA. Angew Chem Int Ed, 2015, 54: 3912–3916

    CAS  Google Scholar 

  19. Saigusa H, Lim EC. Excimer formation in van der Waals dimers and clusters of aromatic molecules. Acc Chem Res, 1996, 29: 171–178

    CAS  Google Scholar 

  20. Winnik FM. Photophysics of preassociated pyrenes in aqueous polymer solutions and in other organized media. Chem Rev, 1993, 93: 587–614

    CAS  Google Scholar 

  21. Østergaard ME, Hrdlicka PJ. Pyrene-functionalized oligonucleotides and locked nucleic acids (LNAs): Tools for fundamental research, diagnostics, and nanotechnology. Chem Soc Rev, 2011, 40: 5771–5788

    Google Scholar 

  22. Kim JS, Quang DT. Calixarene-derived fluorescent probes. Chem Rev, 2007, 107: 3780–3799

    CAS  Google Scholar 

  23. Kenry, Chen C, Liu B. Enhancing the performance of pure organic room-temperature phosphorescent luminophores. Nat Commun, 2019, 10: 2111

    CAS  Google Scholar 

  24. Hirata S. Roles of localized electronic structures caused by π degeneracy due to highly symmetric heavy atom-free conjugated molecular crystals leading to efficient persistent room-temperature phosphorescence. Adv Sci, 2019, 395: 1900410

    Google Scholar 

  25. Li Q, Tang Y, Hu W, et al. Fluorescence of nonaromatic organic systems and room temperature phosphorescence of organic luminogens: The intrinsic principle and recent progress. Small, 2018, 14: 1801560

    Google Scholar 

  26. Chai Z, Wang C, Wang J, et al. Abnormal room temperature phosphorescence of purely organic boron-containing compounds: the relationship between the emissive behaviorand the molecular packing, and the potential related applications. Chem Sci, 2017, 8: 8336–8344

    CAS  Google Scholar 

  27. Xiao L, Fu H. Enhanced room-temperature phosphorescence through intermolecular halogen/hydrogen bonding. Chem Eur J, 2019, 25: 714–723

    CAS  Google Scholar 

  28. Ogoshi T, Tsuchida H, Kakuta T, et al. Ultralong room-temperature phosphorescence from amorphous polymer poly(styrene sulfonic acid) in air in the dry solid state. Adv Funct Mater, 2018, 28: 1707369

    Google Scholar 

  29. Xie Y, Ge Y, Peng Q, et al. How the molecular packing affects the room temperature phosphorescence in pure organic compounds: Ingenious molecular design, detailed crystal analysis, and rational theoretical calculations. Adv Mater, 2017, 29: 1606829

    Google Scholar 

  30. An Z, Zheng C, Tao Y, et al. Stabilizing triplet excited states for ultralong organic phosphorescence. Nat Mater, 2015, 14: 685–690

    CAS  Google Scholar 

  31. Yang J, Ren Z, Chen B, et al. Three polymorphs of one luminogen: how the molecular packing affects the RTP and AIE properties? J Mater Chem C, 2017, 5: 9242–9246

    CAS  Google Scholar 

  32. Yang J, Zhen X, Wang B, et al. The influence of the molecular packing on the room temperature phosphorescence of purely organic luminogens. Nat Commun, 2018, 9: 840

    Google Scholar 

  33. Ma X, Wang J, Tian H. Assembling-induced emission: An efficient approach for amorphous metal-free organic emitting materials with room-temperature phosphorescence. Acc Chem Res, 2019, 52: 738–748

    CAS  Google Scholar 

  34. Kishimura A, Yamashita T, Yamaguchi K, et al. Rewritable phosphorescent paper by the control of competing kinetic and thermodynamic self-assembling events. Nat Mater, 2005, 4: 546–549

    CAS  Google Scholar 

  35. Bolton O, Lee K, Kim HJ, et al. Activating efficient phosphorescence from purely organic materials by crystal design. Nat Chem, 2011, 3: 205–210

    CAS  Google Scholar 

  36. Kabe R, Adachi C. Organic long persistent luminescence. Nature, 2017, 550: 384–387

    CAS  Google Scholar 

  37. Lee D, Bolton O, Kim BC, et al. Room temperature phosphorescence of metal-free organic materials in amorphous polymer matrices. J Am Chem Soc, 2013, 135: 6325–6329

    CAS  Google Scholar 

  38. Wang D, Wang X, Xu C, et al. A novel metal-free amorphous room-temperature phosphorescent polymer without conjugation. Sci China Chem, 2019, 62: 430–433

    CAS  Google Scholar 

  39. Fang M, Yang J, Xiang X, et al. Unexpected room-temperature phosphorescence from a non-aromatic, low molecular weight, pure organic molecule through the intermolecular hydrogen bond. Mater Chem Front, 2018, 2: 2124–2129

    CAS  Google Scholar 

  40. Xie Y, Li Z. Triboluminescence: Recalling interest and new aspects. Chem, 2018, 4: 943–971

    CAS  Google Scholar 

  41. Mukherjee S, Thilagar P. Renaissance of organic triboluminescent materials. Angew Chem Int Ed, 2019, 58: 7922–7932

    CAS  Google Scholar 

  42. Xu B, Li W, He J, et al. Achieving very bright mechanoluminescence from purely organic luminophores with aggregation-induced emission by crystal design. Chem Sci, 2016, 7: 5307–5312

    CAS  Google Scholar 

  43. Wang C, Xu B, Li M, et al. A stable tetraphenylethene derivative: aggregation-induced emission, different crystalline polymorphs, and totally different mechanoluminescence properties. Mater Horiz, 2016, 3: 220–225

    Google Scholar 

  44. Yu Y, Wang C, Wei Y, et al. Halogen-containing TPA-based luminogens: Different molecular packing and different mechanoluminescence. Adv Opt Mater, 2019, 44: 1900505

    Google Scholar 

  45. Yang J, Ren Z, Xie Z, et al. AIEgen with fluorescence-phosphorescence dual mechanoluminescence at room temperature. Angew Chem Int Ed, 2017, 56: 880–884

    CAS  Google Scholar 

  46. Yang J, Qin J, Geng P, et al. Molecular conformation-dependent mechanoluminescence: Same mechanical stimulus but different emissive color over time. Angew Chem Int Ed, 2018, 57: 14174–14178

    CAS  Google Scholar 

  47. Wang J, Wang C, Gong Y, et al. Bromine-substituted fluorene: Molecular structure, Br-Br interactions, room-temperature phosphorescence, and tricolor triboluminescence. Angew Chem Int Ed, 2018, 57: 16821–16826

    CAS  Google Scholar 

  48. Yao ZF, Wang JY, Pei J. Control of π-π stacking via crystal engineering in organic conjugated small molecule crystals. Cryst Growth Des, 2018, 18: 7–15

    CAS  Google Scholar 

  49. Yang J, Gao H, Wang Y, et al. The odd-even effect of alkyl chain in organic room temperature phosphorescence luminogens and the corresponding in vivo imaging. Mater Chem Front, 2019, 3: 1391–1397

    CAS  Google Scholar 

  50. Sun L, Wang Y, Yang F, et al. Cocrystal engineering: A collaborative strategy toward functional materials. Adv Mater, 2019, 112: 1902328

    Google Scholar 

  51. Huang Y, Wang Z, Chen Z, et al. Organic cocrystals: Beyond electrical conductivities and field-effect transistors (FETs). Angew Chem Int Ed, 2019, 58: 9696–9711

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the National Natural Science Foundation of China (51673151), Natural Science Foundation of Hubei Province (2017CFA002), and the Fundamental Research Funds for the Central Universities (2042017kf0247 and 2042018kf0014) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

Li Q wrote the manuscript with support from Li Z. Both authors contributed general discussion.

Corresponding author

Correspondence to Zhen Li  (李振).

Additional information

Conflict of interest

The authors declare no conflict of interest.

Qianqian Li received her BSc degree from Hubei University, China, in 2004, and then obtained her PhD degree at Wuhan University in 2009. She is now a full professor at Wuhan University (WHU), and her research interests are in the design and synthesis of new optoelectronic functional materials.

Zhen Li received his BSc and PhD degrees from WHU, China, in 1997 and 2002, respectively. In 2003–2004, he worked in the Hongkong University of Science and Technology. In 2010, he worked in Georgia Institute of Technology. He has been a full professor at WHU since 2006 and his research interests are in the development of organic molecules and polymers with new structures and new functions for organic electronics and photonics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Li, Z. Miracles of molecular uniting. Sci. China Mater. 63, 177–184 (2020). https://doi.org/10.1007/s40843-019-1172-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-019-1172-2

Navigation