Science China Materials

, Volume 62, Issue 6, pp 790–796 | Cite as

Organic-inorganic hybrid Sn-based perovskite photodetectors with high external quantum efficiencies and wide spectral responses from 300 to 1000 nm

  • Yukun Wang (王玉坤)
  • Dezhi Yang (杨德志)
  • Dongge Ma (马东阁)Email author
  • Dong Ha Kim (金东海)
  • Tansir Ahamad
  • Saad M. Alshehri
  • Agafonv Vadim


Organic-inorganic hybrid perovskites are ideal materials for photodetection owing to their high charge carrier mobility, long charge carrier diffusion length, low dark current density and sharp absorption edge. However, a relatively small band gap (1.6 eV) limits their photon-harvesting efficiency in the near-infrared region. In the present work, we demonstrate a hybrid methylamine iodide and Pb-Sn binary perovskite as the light absorption layer in photodetectors. Experimentally, the wavelength of photoresponse onset for the photodetectors can be extended to as great as 1,000 nm when the Sn content of the hybrid perovskite is increased to 30 mol%. In addition, the photodetectors exhibit a photoresponsivity of 0.39 A W−1, a specific detectivity of 7×1012 Jones, a fast photoresponse with rise and decay time constants and an external quantum efficiency greater than 50% in the wavelength range of 350–900 nm, with a maximum value of about 80% at 550 nm.


organic-inorganic hybrid perovskite photodetector external quantum efficiency spectral response specific detectivity 

具有高外量子效率和宽光谱(300~1000 nm)响应的有机-无机杂化锡基钙钛矿光电探测器


有机-无机杂化钙钛矿材料具有载流子迁移率高、 扩散长度长、 暗电流密度低、 吸收边缘锋利等优点, 因而成为用于光电探测的理想材料. 但是, 相对较小的带隙(1.6 eV)限制了这些材料在近红外区的光子捕获效率. 本研究中, 我们利用碘甲胺和铅-锡二元钙钛矿作为探测器的光吸收层, 导电聚合物和富勒烯作为空穴和电子传输层, 铟锡氧化物和铝作为阳极和阴极制备了光电探测器件. 实验结果表明, 当锡的含量达到30%时, 探测器的光谱响应拓宽到1000 nm. 此外, 我们制备的探测器的光谱响应度达到0.39 A W−1, 归一化探测率达到 7×1012 Jones. 器件的外量子效率在350到900 nm范围内, 均超过50%, 在550 nm处取得最大值, 超过80%.



The authors gratefully acknowledge the International Cooperation Foundation of China (2015DFR10700), the National Natural Science Foundation of China (51403203) for the support of this research. Prof. Ma D extends his appreciation to the Distinguished Scientist Fellowship Program (DSFP) at King Saud University, Riyadh, Kingdom of Saudi Arabia for financial support. Prof. Agafonov Vadim thanks the support of the Russian Ministry of Education and Science state assignment No 3.3197.2017/ПЧ.

Supplementary material

40843_2018_9377_MOESM1_ESM.pdf (714 kb)
Organic-Inorganic Hybrid Sn-based Perovskite Photodetectors with High External Quantum Efficiencies and Wide Spectral Responses from 300 to 1000 nm


  1. 1.
    Lin Q, Armin A, Nagiri RCR, et al. Electro-optics of perovskite solar cells. Nat Photonics, 2015, 9: 106–112CrossRefGoogle Scholar
  2. 2.
    Leijtens T, Stranks SD, Eperon GE, et al. Electronic properties of meso-superstructured and planar organometal halide perovskite films: charge trapping, photodoping, and carrier mobility. ACS Nano, 2014, 8: 7147–7155CrossRefGoogle Scholar
  3. 3.
    Lim KG, Kim HB, Jeong J, et al. Boosting the power conversion efficiency of perovskite solar cells using self-organized polymeric hole extraction layers with high work function. Adv Mater, 2014, 26: 6461–6466CrossRefGoogle Scholar
  4. 4.
    Frost JM, Butler KT, Brivio F, et al. Atomistic origins of highperformance in hybrid halide perovskite solar cells. Nano Lett, 2014, 14: 2584–2590CrossRefGoogle Scholar
  5. 5.
    Xing G, Mathews N, Lim SS, et al. Low-temperature solutionprocessed wavelength-tunable perovskites for lasing. Nat Mater, 2014, 13: 476–480CrossRefGoogle Scholar
  6. 6.
    Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 2009, 131: 6050–6051CrossRefGoogle Scholar
  7. 7.
    Im JH, Lee CR, Lee JW, et al. 6.5% Efficient perovskite quantumdot- sensitized solar cell. Nanoscale, 2011, 3: 4088–4093CrossRefGoogle Scholar
  8. 8.
    Kim HS, Lee CR, Im JH, et al. Lead iodide perovskite sensitized allsolid- state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep, 2012, 2: 591CrossRefGoogle Scholar
  9. 9.
    Jeon NJ, Noh JH, Kim YC, et al. Solvent engineering for highperformance inorganic–organic hybrid perovskite solar cells. Nat Mater, 2014, 13: 897–903CrossRefGoogle Scholar
  10. 10.
    Zhou H, Chen Q, Li G, et al. Interface engineering of highly efficient perovskite solar cells. Science, 2014, 345: 542–546CrossRefGoogle Scholar
  11. 11.
    Yang WS, Noh JH, Jeon NJ, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348: 1234–1237CrossRefGoogle Scholar
  12. 12.
    Bi D, Tress W, Dar MI, et al. Efficient luminescent solar cells based on tailored mixed-cation perovskites. Sci Adv, 2016, 2: e1501170Google Scholar
  13. 13.
    Yang WS, Park BW, Jung EH, et al. Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science, 2017, 356: 1376–1379CrossRefGoogle Scholar
  14. 14.
    Hao F, Stoumpos CC, Cao DH, et al. Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat Photonics, 2014, 8: 489–494CrossRefGoogle Scholar
  15. 15.
    Li J, Xu L, Wang T, et al. 50-Fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Adv Mater, 2017, 29: 1603885CrossRefGoogle Scholar
  16. 16.
    Cai B, Li X, Gu Y, et al. Quantum confinement effect of twodimensional all-inorganic halide perovskites. Sci China Mater, 2017, 60: 811–818CrossRefGoogle Scholar
  17. 17.
    Zhang X, Yang S, Zhou H, et al. Perovskite-erbium silicate nanosheet hybrid waveguide photodetectors at the near-infrared telecommunication band. Adv Mater, 2017, 29: 1604431CrossRefGoogle Scholar
  18. 18.
    Dou L, Yang YM, You J, et al. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat Commun, 2014, 5: 5404CrossRefGoogle Scholar
  19. 19.
    Fang Y, Huang J. Resolving weak light of sub-picowatt per square centimeter by hybrid perovskite photodetectors enabled by noise reduction. Adv Mater, 2015, 27: 2804–2810CrossRefGoogle Scholar
  20. 20.
    Lin Q, Armin A, Lyons DM, et al. Low noise, IR-blind organohalide perovskite photodiodes for visible light detection and imaging. Adv Mater, 2015, 27: 2060–2064CrossRefGoogle Scholar
  21. 21.
    Wang Y, Yang D, Zhou X, et al. CH3NH3PbI3/C60 heterojunction photodetectors with low dark current and high detectivity. Org Electron, 2017, 42: 203–208CrossRefGoogle Scholar
  22. 22.
    Liu Y, Hong Z, Chen Q, et al. Integrated perovskite/bulkheterojunction toward efficient solar cells. Nano Lett, 2015, 15: 662–668CrossRefGoogle Scholar
  23. 23.
    Wang Y, Yang D, Zhou X, et al. Perovskite/polymer hybrid thin films for high external quantum efficiency photodetectors with wide spectral response from visible to near-infrared wavelengths. Adv Opt Mater, 2017, 5: 1700213CrossRefGoogle Scholar
  24. 24.
    Waleed A, Tavakoli MM, Gu L, et al. Lead-free perovskite nanowire array photodetectors with drastically improved stability in nanoengineering templates. Nano Lett, 2017, 17: 523–530CrossRefGoogle Scholar
  25. 25.
    Li Y, Sun W, Yan W, et al. 50% Sn-based planar perovskite solar cell with power conversion efficiency up to 13.6%. Adv Energy Mater, 2016, 6: 1601353CrossRefGoogle Scholar
  26. 26.
    Wang Y, Yang D, Zhou X, et al. Vapour-assisted multi-functional perovskite thin films for solar cells and photodetectors. J Mater Chem C, 2016, 4: 7415–7419CrossRefGoogle Scholar
  27. 27.
    Kieslich G, Sun S, Cheetham AK. Solid-state principles applied to organic–inorganic perovskites: new tricks for an old dog. Chem Sci, 2014, 5: 4712–4715CrossRefGoogle Scholar
  28. 28.
    Zhao Y, Zhu K. Organic–inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chem Soc Rev, 2016, 45: 655–689CrossRefGoogle Scholar
  29. 29.
    Chen Q, Zhou H, Hong Z, et al. Planar heterojunction perovskite solar cells via vapor-assisted solution process. J Am Chem Soc, 2014, 136: 622–625CrossRefGoogle Scholar
  30. 30.
    Liao W, Zhao D, Yu Y, et al. Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22%. Adv Mater, 2016, 28: 9333–9340CrossRefGoogle Scholar
  31. 31.
    Ogomi Y, Morita A, Tsukamoto S, et al. CH3NH3SnxPb(1–x)I3 perovskite solar cells covering up to 1060 nm. J Phys Chem Lett, 2014, 5: 1004–1011CrossRefGoogle Scholar
  32. 32.
    Qi J, Han J, Zhou X, et al. Optimization of broad-response and high-detectivity polymer photodetectors by bandgap engineering of weak donor–strong acceptor polymers. Macromolecules, 2015, 48: 3941–3948CrossRefGoogle Scholar
  33. 33.
    Han J, Qi J, Zheng X, et al. Low-bandgap donor–acceptor polymers for photodetectors with photoresponsivity from 300 nm to 1600 nm. J Mater Chem C, 2017, 5: 159–165CrossRefGoogle Scholar
  34. 34.
    Gong X, Tong M, Xia Y, et al. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science, 2009, 325: 1665–1667CrossRefGoogle Scholar
  35. 35.
    Zhou X, Yang D, Ma D. Extremely low dark current, high responsivity, all-polymer photodetectors with spectral response from 300 nm to 1000 nm. Adv Opt Mater, 2015, 3: 1570–1576CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yukun Wang (王玉坤)
    • 1
    • 2
  • Dezhi Yang (杨德志)
    • 1
  • Dongge Ma (马东阁)
    • 1
    • 3
    Email author
  • Dong Ha Kim (金东海)
    • 2
  • Tansir Ahamad
    • 3
  • Saad M. Alshehri
    • 3
  • Agafonv Vadim
    • 4
  1. 1.Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and DevicesSouth China University of TechnologyGuangzhouChina
  2. 2.Department of Chemistry and Nano ScienceEwha Womans UniversitySeoulKorea
  3. 3.Department of Chemistry, College of ScienceKing Saud UniversityRiyadhKingdom of Saudi Arabia
  4. 4.Moscow Institute of Physics and TechnologyDolgoprudny, Moscow RegionRussia

Personalised recommendations