Science China Materials

, Volume 62, Issue 5, pp 736–744 | Cite as

Graded microstructures of Al-Li-Mg-Zn-Cu entropic alloys under supergravity

  • Ruixuan Li (李蕊轩)
  • Zhe Wang (王哲)
  • Zhancheng Guo (郭占成)
  • Peter K. Liaw
  • Tao Zhang (张涛)
  • Lugee Li (李扬德)
  • Yong Zhang (张勇)Email author


Investigating the microstructures and properties of gradient materials has been regarded as a promising way to accelerate the identification of optimal compositions for applications. Herein, a supergravity method is applied to prepare the graded entropic alloys Al-Zn-Li-Mg-Cu. Through carefully optimizing the experimental conditions, the graded microstructures and hardness values appear after the supergravity technique. The morphology of the alloy significantly changes from the bulk intermetallics to eutectic structures along the supergravity force direction, which results from the crushed and graded aluminum oxide combined with the extremely-strong force. The results show that with this supergravity method, a performance-enhanced alloy can potentially be achieved through the centrifugation in a short time span and thus it paves the way for designing and synthesizing entropic alloys with intriguing properties.


entropic alloys supergravity graded microstructures grain refinement viscosity 



研究梯度材料的组织结构及其性能可以加速开发具有优异性能的新成分材料. 本文提出一种新方法来制备梯度多组元合金Al-Li- Mg-Zn-Cu——超重力法(即离心). 通过实验条件的优化和系统的表征, 我们发现超重力处理后出现了梯度组织结构和硬度值. 沿着超重 力方向, 合金的组织结构从大块金属间化合物转化为共晶结构, 同时铝的氧化物也在离心中被打碎并沿着这一方向梯度分布. 实验结果表 示, 通过短时间离心的超重力方法有望提升合金综合性能并加快高性能多组元合金的开发.



Zhang Y would like to thank the financial support from the National Natural Science Foundation of China (NSFC, 51471025 and 51671020).


  1. 1.
    Koizumi M. FGM activities in Japan. Compos Part B-Eng, 1997, 28: 1–4CrossRefGoogle Scholar
  2. 2.
    Gupta A, Talha M. Recent development in modeling and analysis of functionally graded materials and structures. Prog Aerospace Sci, 2015, 79: 1–14CrossRefGoogle Scholar
  3. 3.
    Adachi S, Ueda N. Combined plasma carburizing and nitriding of sprayed AISI 316L steel coating for improved wear resistance. Surf Coatings Tech, 2014, 259: 44–49CrossRefGoogle Scholar
  4. 4.
    Suresh S. Graded materials for resistance to contact deformation and damage. Science, 2001, 292: 2447–2451CrossRefGoogle Scholar
  5. 5.
    Shanmugavel P, Bhaskar GB, Chandrasekaran M, et al. An overview of fracture analysis in Functionally Graded Materials. Euro J Sci Res, 2012, 68: 412–439Google Scholar
  6. 6.
    Fang TH, Li WL, Tao NR, et al. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science, 2011, 331: 1587–1590CrossRefGoogle Scholar
  7. 7.
    Wei Y, Li Y, Zhu L, et al. Evading the strength–ductility trade-off dilemma in steel through gradient hierarchical nanotwins. Nat Commun, 2014, 5: 3580CrossRefGoogle Scholar
  8. 8.
    Kawasaki A, Watanabe R. Concept and P/M fabrication of functionally gradient materials. Ceramics Int, 1997, 23: 73–83CrossRefGoogle Scholar
  9. 9.
    Zhu J, Lai Z, Yin Z, et al. Fabrication of ZrO2–NiCr functionally graded material by powder metallurgy. Mater Chem Phys, 2001, 68: 130–135CrossRefGoogle Scholar
  10. 10.
    Zhang Y, Han J, Zhang X, et al. Rapid prototyping and combustion synthesis of TiC/Ni functionally gradient materials. Mater Sci Eng- A, 2001, 299: 218–224CrossRefGoogle Scholar
  11. 11.
    Groves JF, Wadley HNG. Functionally graded materials synthesis via low vacuum directed vapor deposition. Compos Part B-Eng, 1997, 28: 57–69CrossRefGoogle Scholar
  12. 12.
    Löffler JF, Bossuyt S, Peker A, et al. High-temperature centrifugation: a tool for finding eutectic compositions in multicomponent alloys. Appl Phys Lett, 2002, 81: 4159–4161CrossRefGoogle Scholar
  13. 13.
    Löffler JF, Johnson WL. Crystallization of Mg–Al and Al-based metallic liquids under ultra-high gravity. Intermetallics, 2002, 10: 1167–1175CrossRefGoogle Scholar
  14. 14.
    Löffler JF, Peker A, Bossuyt S, et al. Processing of metallic glassforming liquids under ultra-high gravity. Mater Sci Eng-A, 2004, 375–377: 341–345Google Scholar
  15. 15.
    Meng L, Gao J, Zhong Y, et al. Supergravity separation for recovering Pb and Sn from electronic waste. Separation Purification Tech, 2018, 191: 375–383CrossRefGoogle Scholar
  16. 16.
    Wang Z, Gao J, Shi A, et al. Recovery of zinc from galvanizing dross by a method of super-gravity separation. J Alloys Compd, 2018, 735: 1997–2006CrossRefGoogle Scholar
  17. 17.
    Wang Z, Gao J, Meng L, et al. Recovery of zinc from Zn–Al–Fe melt by super-gravity separation. ISIJ Int, 2018, 58: 1175–1177CrossRefGoogle Scholar
  18. 18.
    Zhao L, Guo Z, Wang Z, et al. Removal of low-content impurities from Al by super-gravity. Metall Materi Trans B, 2010, 41: 505–508CrossRefGoogle Scholar
  19. 19.
    Xie Y, Liu C, Zhai Y, et al. Centrifugal casting processes of manufacturing in situ functionally gradient composite materials of Al- 19Si-5Mg alloy. Rare Met, 2009, 28: 405–411CrossRefGoogle Scholar
  20. 20.
    Li RX, Liaw PK, Zhang Y. Synthesis of AlxCoCrFeNi high-entropy alloys by high-gravity combustion from oxides. Mater Sci Eng-A, 2017, 707: 668–673CrossRefGoogle Scholar
  21. 21.
    Kumar A, Gupta M. An insight into evolution of light weight high entropy alloys: a review. Metals, 2016, 6: 199CrossRefGoogle Scholar
  22. 22.
    Stepanov ND, Shaysultanov DG, Salishchev GA, et al. Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy. Mater Lett, 2015, 142: 153–155CrossRefGoogle Scholar
  23. 23.
    Youssef KM, Zaddach AJ, Niu C, et al. A novel low-density, highhardness, high-entropy alloy with close-packed single-phase nanocrystalline structures. Mater Res Lett, 2015, 3: 95–99CrossRefGoogle Scholar
  24. 24.
    Tseng KK, Yang YC, Juan CC, et al. A light-weight high-entropy alloy Al20Be20Fe10Si15Ti35. Sci China Technol Sci, 2018, 61: 184–188CrossRefGoogle Scholar
  25. 25.
    Yang X, Chen SY, Cotton JD, et al. Phase stability of low-density, multiprincipal component alloys containing aluminum, magnesium, and lithium. JOM, 2014, 66: 2009–2020CrossRefGoogle Scholar
  26. 26.
    Du XH, Wang R, Chen C, et al. Preparation of a light-weight MgCaAlLiCu high-entropy alloy. KEM, 2017, 727: 132–135CrossRefGoogle Scholar
  27. 27.
    Li R, Gao JC, Fan K. Study to microstructure and mechanical properties of Mg containing high entropy alloys. MSF, 2010, 650: 265–271CrossRefGoogle Scholar
  28. 28.
    Teng GB, Liu CY, Ma ZY, et al. Effects of minor Sc addition on the microstructure and mechanical properties of 7055 Al alloy during aging. Mater Sci Eng-A, 2018, 713: 61–66CrossRefGoogle Scholar
  29. 29.
    Takata N, Okano T, Suzuki A, et al. Microstructure of intermetallic- reinforced Al-Based alloy composites fabricated using eutectic reactions in Al–Mg–Zn ternary system. Intermetallics, 2018, 95: 48–58CrossRefGoogle Scholar
  30. 30.
    Zhang Y, Zuo TT, Tang Z, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci, 2014, 61: 1–93CrossRefGoogle Scholar
  31. 31.
    Yoshikawa T, Morita K. Refining of Si by the solidification of Si-Al melt with electromagnetic force. ISIJ Int, 2005, 45: 967–971CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ruixuan Li (李蕊轩)
    • 1
    • 2
  • Zhe Wang (王哲)
    • 3
  • Zhancheng Guo (郭占成)
    • 3
  • Peter K. Liaw
    • 4
  • Tao Zhang (张涛)
    • 5
  • Lugee Li (李扬德)
    • 5
  • Yong Zhang (张勇)
    • 1
    • 2
    Email author
  1. 1.State Key Laboratory for Advanced Metals and MaterialsUniversity of Science and Technology BeijingBeijingChina
  2. 2.Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface ScienceUniversity of Science and Technology BeijingBeijingChina
  3. 3.State Key Laboratory of Advanced MetallurgyUniversity of Science and Technology BeijingBeijingChina
  4. 4.Department of Materials Science and EngineeringThe University of TennesseeKnoxvilleUSA
  5. 5.Dongguan EON Institute for Advanced MaterialsDongguanChina

Personalised recommendations