Science China Materials

, Volume 62, Issue 4, pp 474–486 | Cite as

Rapid microwave-assisted refluxing synthesis of hierarchical mulberry-shaped Na3V2(PO4)2O2F@C as high performance cathode for sodium & lithium-ion batteries

  • Yan Hou (侯燕)
  • Kun Chang (常焜)
  • Zhenyu Wang (王振宇)
  • Shuai Gu (顾帅)
  • Qiong Liu (刘琼)
  • Junjun Zhang (张钧君)
  • Hua Cheng (程化)
  • Shenglin Zhang (张圣麟)
  • Zhaorong Chang (常照荣)Email author
  • Zhouguang Lu (卢周广)Email author


Unique hierarchical mulberry-shaped Na3V2(PO4)2O2F@C nanocomposite was fabricated by a rapid microwave-assisted low-temperature refluxing strategy. The V(acac)3 reverse micelle systems in the water-in-oil microemulsions played key roles in forming the self-assembly architectures. The prepared Na3V2(PO4)2O2F@C nanoparticles with the anisotropic growth along the [002] direction were in-situ encapsulated in carbon shells, which greatly contribute to fast Na+/e transfer in electrodes. And the self-assemblies with high structure stability help to improve the cycle performance and mitigate voltage fading. The initial discharge capacity of Na3V2(PO4)2O2F@C as cathode for sodium ion batteries is about 127.9 mA h g−1 at 0.1 C. Besides, a high rate performance with a capacity of 88.1 mA h g−1 at 20 C has been achieved, and the capacity retains 82.1% after 2,000 cycles. In addition, the reaction kinetics and Na+ transportation mechanism of Na3V2(PO4)2O2F@C were preliminarily investigated by the ex situ X-ray diffraction, X-ray photoelectron spectroscopy and galvanostatic intermittent titration technique. More interestingly, when coupled with Li, the fabricated hybrid Li/Na-ion batteries also exhibit excellent rate and cycling performances. The proposed rapid refluxing strategy to synthesize mulberry-shaped Na3V2(PO4)2O2F@C opens up a new opportunity to develop high-performance electrode materials for the energy storage systems.


sodium and lithium ion batteries cathode materials fluorophosphates microwave-assisted refluxing hierarchical self-assembly 



本论文采用快速微波辅助低温回流策略制备了桑椹形Na3V2(PO4)2O2F@C纳米复合材料. 研究表明微乳液中的V(acac)3反胶束体系 对该自组装结构的形成起到了关键作用. 制得的Na3V2(PO4)2O2F晶粒沿着[002]方向生长并被原位包封在碳壳中, 形成了高度稳定的自组装结构, 这不仅有利于Na+/e的快速迁移, 而且能够有效改善电极材料的循环性能并抑制电压衰减. 作为钠离子电池正极材料, 在0.1C条件下, Na3V2(PO4)2O2F@C的初始放电容量约为127.9 mA h g−1. 在高倍率(20 C)条件下, 容量达88.1 mA h g−1, 2000次循环后容量保持率为 82.1%. 此外, 利用非原位X射线衍射, X射线光电子能谱和恒电流间歇滴定技术, 初步研究了Na3V2(PO4)2O2F@C在充放电过程中的反应机 理和Na+迁移机制. 同时, 在Li/Na离子混合电池当中, Na3V2(PO4)2O2F@C也表现出了优异的倍率和循环性能. 上述微波辅助低温回流合成 策略为开发高性能电化学储能材料开辟了新的途径.



This work was supported by the National Natural Science Foundation of China (21303042, 21875097, 21671096 and 21603094), the Guangdong Special Support for the Science and Technology Leading Young Scientist (2016TQ03C919), and the Basic Research Project of the Science and Technology Innovation Commission of Shenzhen (JCYJ20170412153139454 and JCYJ20170817110251498).

Supplementary material

40843_2018_9342_MOESM1_ESM.pdf (4.3 mb)
Rapid Microwave-Assisted Refluxing Synthesis of Hierarchical Mulberry-Shaped Na3V2(PO4)2O2F@C as High Performance Cathode for Sodium & Lithium-Ion Batteries


  1. 1.
    Nayak PK, Yang L, Brehm W, et al. From lithium-ion to sodiumion batteries: advantages, challenges, and surprises. Angew Chem Int Ed, 2017, 57: 102–120CrossRefGoogle Scholar
  2. 2.
    Ni Q, Bai Y, Wu F, et al. Polyanion-type electrode materials for sodium-ion batteries. Adv Sci, 2017, 4: 1600275CrossRefGoogle Scholar
  3. 3.
    Wang D, Bie X, Fu Q, et al. Sodium vanadium titanium phosphate electrode for symmetric sodium-ion batteries with high power and long lifespan. Nat Commun, 2017, 8: 15888CrossRefGoogle Scholar
  4. 4.
    You Y, Manthiram A. Progress in high-voltage cathode materials for rechargeable sodium-ion batteries. Adv Energy Mater, 2018, 8: 1701785CrossRefGoogle Scholar
  5. 5.
    Masquelier C, Croguennec L. Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. Chem Rev, 2013, 113: 6552–6591CrossRefGoogle Scholar
  6. 6.
    Wang D, Chen N, Li M, et al. Na3V2(PO4)3/C composite as the intercalation-type anode material for sodium-ion batteries with superior rate capability and long-cycle life. J Mater Chem A, 2015, 3: 8636–8642CrossRefGoogle Scholar
  7. 7.
    Zhu C, Wu C, Chen CC, et al. A high power–high energy Na3V2(PO4)2F3 sodium cathode: investigation of transport parameters, rational design and realization. Chem Mater, 2017, 29: 5207–5215CrossRefGoogle Scholar
  8. 8.
    Kawabe Y, Yabuuchi N, Kajiyama M, et al. Synthesis and electrode performance of carbon coated Na2FePO4F for rechargeable Na batteries. Electrochem Commun, 2011, 13: 1225–1228CrossRefGoogle Scholar
  9. 9.
    Langrock A, Xu Y, Liu Y, et al. Carbon coated hollow Na2FePO4F spheres for Na-ion battery cathodes. J Power Sources, 2013, 223: 62–67CrossRefGoogle Scholar
  10. 10.
    Deng X, Shi W, Sunarso J, et al. A green route to a Na2FePO4 F-based cathode for sodium ion batteries of high rate and long cycling life. ACS Appl Mater Interfaces, 2017, 9: 16280–16287CrossRefGoogle Scholar
  11. 11.
    Barker J, Saidi MY, Swoyer JL. A comparative investigation of the Li insertion properties of the novel fluorophosphate phases, NaVPO4F and LiVPO4F. J Electrochem Soc, 2004, 151: A1670Google Scholar
  12. 12.
    Zhao J, He J, Ding X, et al. A novel sol–gel synthesis route to NaVPO4F as cathode material for hybrid lithium ion batteries. J Power Sources, 2010, 195: 6854–6859CrossRefGoogle Scholar
  13. 13.
    Serras P, Palomares V, Goñi A, et al. High voltage cathode materials for Na-ion batteries of general formula Na3V2O2x(PO4)2F3−2x. J Mater Chem, 2012, 22: 22301CrossRefGoogle Scholar
  14. 14.
    Serras P, Palomares V, Rojo T, et al. Structural evolution of high energy density V3+/V4+ mixed valent Na3V2O2x(PO4)2F3−2x (x=0.8) sodium vanadium fluorophosphate using in situ synchrotron X-ray powder diffraction. J Mater Chem A, 2014, 2: 7766–7779CrossRefGoogle Scholar
  15. 15.
    Kumar PR, Jung YH, Lim CH, et al. Na3V2O2x(PO4)2F3−2x: a stable and high-voltage cathode material for aqueous sodium-ion batteries with high energy density. J Mater Chem A, 2015, 3: 6271–6275CrossRefGoogle Scholar
  16. 16.
    Park YU, Seo DH, Kim H, et al. A family of high-performance cathode materials for Na-ion batteries, Na3(VO1−xPO4)2F1+2x (0≤x≤1): combined first-principles and experimental study. Adv Funct Mater, 2014, 24: 4603–4614CrossRefGoogle Scholar
  17. 17.
    Park YU, Seo DH, Kwon HS, et al. A new high-energy cathode for a Na-ion battery with ultrahigh stability. J Am Chem Soc, 2013, 135: 13870–13878CrossRefGoogle Scholar
  18. 18.
    Deng G, Chao D, Guo Y, et al. Graphene quantum dots-shielded Na3(VO)2(PO4)2F@C nanocuboids as robust cathode for Na-ion battery. Energy Storage Mater, 2016, 5: 198–204CrossRefGoogle Scholar
  19. 19.
    Qi Y, Mu L, Zhao J, et al. Superior Na-storage performance of lowtemperature- synthesized Na3(VO1−xPO4)2F1+2x (0≤x≤1) nanoparticles for Na-ion batteries. Angew Chem Int Ed, 2015, 54: 9911–9916CrossRefGoogle Scholar
  20. 20.
    Sauvage F, Quarez E, Tarascon JM, et al. Crystal structure and electrochemical properties vs. Na+ of the sodium fluorophosphate Na1.5VOPO4F0.5. Solid State Sci, 2006, 8: 1215–1221CrossRefGoogle Scholar
  21. 21.
    Guo JZ, Wang PF, Wu XL, et al. High-energy/power and lowtemperature cathode for sodium-ion batteries: in situ XRD study and superior full-cell performance. Adv Mater, 2017, 29: 1701968CrossRefGoogle Scholar
  22. 22.
    Chao D, Lai CHM, Liang P, et al. Sodium vanadium fluorophosphates (NVOPF) array cathode designed for high-rate full sodium ion storage device. Adv Energy Mater, 2018, 8: 1800058CrossRefGoogle Scholar
  23. 23.
    Jin H, Liu M, Uchaker E, et al. Nanoporous carbon leading to the high performance of a Na3V2O2(PO4)2F@carbon/graphene cathode in a sodium ion battery. CrystEngComm, 2017, 19: 4287–4293CrossRefGoogle Scholar
  24. 24.
    Zhao J, Yang X, Yao Y, et al. Moving to aqueous binder: a valid approach to achieving high-rate capability and long-term durability for sodium-ion battery. Adv Sci, 2018, 5: 1700768CrossRefGoogle Scholar
  25. 25.
    Zan G, Wu Q. Biomimetic and bioinspired synthesis of nanomaterials/ nanostructures. Adv Mater, 2016, 28: 2099–2147CrossRefGoogle Scholar
  26. 26.
    Baghbanzadeh M, Carbone L, Cozzoli PD, et al. Microwave-assisted synthesis of colloidal inorganic nanocrystals. Angew Chem Int Ed, 2011, 50: 11312–11359CrossRefGoogle Scholar
  27. 27.
    Wang D, Liu Q, Chen C, et al. Nasicon-structured NaTi2(PO4)3@C nanocomposite as the low operation-voltage anode material for high-performance sodium-ion batteries. ACS Appl Mater Interfaces, 2016, 8: 2238–2246CrossRefGoogle Scholar
  28. 28.
    Xu M, Wang L, Zhao X, et al. Na3V2O2(PO4)2F/graphene sandwich structure for high-performance cathode of a sodium-ion battery. Phys Chem Chem Phys, 2013, 15: 13032–13037CrossRefGoogle Scholar
  29. 29.
    Hou Y, Chang K, Li B, et al. Highly [010]-oriented self-assembled LiCoPO4/C nanoflakes as high-performance cathode for lithium ion batteries. Nano Res, 2018, 11: 2424–2435CrossRefGoogle Scholar
  30. 30.
    Zheng YZ, Ding H, Uchaker E, et al. Nickel-mediated polyol synthesis of hierarchical V2O5 hollow microspheres with enhanced lithium storage properties. J Mater Chem A, 2015, 3: 1979–1985CrossRefGoogle Scholar
  31. 31.
    Wu S, Zhu Y, Huo Y, et al. Bimetallic organic frameworks derived CuNi/carbon nanocomposites as efficient electrocatalysts for oxygen reduction reaction. Sci China Mater, 2017, 60: 654–663CrossRefGoogle Scholar
  32. 32.
    Massa W, Yakubovich OV, Dimitrova OV. Crystal structure of a new sodium vanadyl(IV) fluoride phosphate Na3{V2O2F[PO4]2}. Solid State Sci, 2002, 4: 495–501CrossRefGoogle Scholar
  33. 33.
    Jin H, Dong J, Uchaker E, et al. Three dimensional architecture of carbon wrapped multilayer Na3V2O2(PO4)2F nanocubes embedded in graphene for improved sodium ion batteries. J Mater Chem A, 2015, 3: 17563–17568CrossRefGoogle Scholar
  34. 34.
    Harrison KL, Manthiram A. Microwave-assisted solvothermal synthesis and characterization of metastable LiFe1−x(VO)xPO4 cathodes. Inorg Chem, 2011, 50: 3613–3620CrossRefGoogle Scholar
  35. 35.
    Saravanan K, Mason CW, Rudola A, et al. The first report on excellent cycling stability and superior rate capability of Na3V2(PO4)3 for sodium ion batteries. Adv Energy Mater, 2013, 3: 444–450CrossRefGoogle Scholar
  36. 36.
    Serras P, Palomares V, Alonso J, et al. Electrochemical Na extraction/ insertion of Na3V2O2x(PO4)2F3–2x. Chem Mater, 2013, 25: 4917–4925CrossRefGoogle Scholar
  37. 37.
    Yin Y, Xiong F, Pei C, et al. Robust three-dimensional graphene skeleton encapsulated Na3V2O2(PO4)2F nanoparticles as a high-rate and long-life cathode of sodium-ion batteries. Nano Energy, 2017, 41: 452–459CrossRefGoogle Scholar
  38. 38.
    Yang T, Qian T, Wang M, et al. A sustainable route from biomass byproduct okara to high content nitrogen-doped carbon sheets for efficient sodium ion batteries. Adv Mater, 2016, 28: 539–545CrossRefGoogle Scholar
  39. 39.
    Ni Q, Bai Y, Li Y, et al. 3D electronic channels wrapped large-sized Na3V2(PO4)3 as flexible electrode for sodium-ion batteries. Small, 2018, 327: 1702864CrossRefGoogle Scholar
  40. 40.
    Guo JZ, Yang Y, Liu DS, et al. A practicable Li/Na-ion hybrid full battery assembled by a high-voltage cathode and commercial graphite anode: superior energy storage performance and working mechanism. Adv Energy Mater, 2018, 8: 1702504CrossRefGoogle Scholar
  41. 41.
    An Q, Xiong F, Wei Q, et al. Nanoflake-assembled hierarchical Na3V2(PO4)3/C microflowers: Superior Li storage performance and insertion/extraction mechanism. Adv Energy Mater, 2015, 5: 1401963CrossRefGoogle Scholar
  42. 42.
    Wu S, Wang W, Li M, et al. Highly durable organic electrode for sodium-ion batteries via a stabilized α-C radical intermediate. Nat Commun, 2016, 7: 13318CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yan Hou (侯燕)
    • 1
    • 2
  • Kun Chang (常焜)
    • 3
  • Zhenyu Wang (王振宇)
    • 2
  • Shuai Gu (顾帅)
    • 2
  • Qiong Liu (刘琼)
    • 2
  • Junjun Zhang (张钧君)
    • 2
  • Hua Cheng (程化)
    • 2
  • Shenglin Zhang (张圣麟)
    • 1
  • Zhaorong Chang (常照荣)
    • 1
    Email author
  • Zhouguang Lu (卢周广)
    • 2
    Email author
  1. 1.Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical EngineeringHenan Normal UniversityXinxiangChina
  2. 2.Department of Materials Science & EngineeringSouthern University of Science and TechnologyShenzhenChina
  3. 3.National Institute for Materials Science (NIMS)Tsukuba, IbarakiJapan

Personalised recommendations