Emerging barcode particles for multiplex bioassays

基于新兴编码微载体的多元生物检测

Abstract

With the increasing demand for multiplex and high-throughput analysis of large numbers of biomolecules, multiplex technology becomes a promising tool for carrying out thousands of individual reactions at the same time for large-scale biological analysis. Among current technologies, suspension arrays based on appropriate barcode particles have been popularly used in multiplex bioassays of many research fields with the ability of unique encoding, such as in the clinical, medicinal, nutritional, and environmental fields. Besides the unique form of barcode, these particles have higher flexibility, better sensitivity, and faster reaction kinetics. In this review, we present some examples of typical barcode particles that are divided into different groups depending on how they are encoded and their applications in multiplex bioassays for different targets such as proteins, DNA and RNA sequences, and cells. The bioassays for monitoring food safety, drug research, and clinical diagnosis are also described.

摘要

随着对大量生物分子的高通量分析的需求不断增长, 多元分析成为用于进行大规模生物分析的前景技术. 在目前的技术中, 基于编码微载体的液相芯片已被广泛用于如临床、 医学、 营养和环境等诸多研究领域的多元生物检测中. 这些编码微载体除了具有独特的编码形式, 还具有更高的灵活性, 更好的灵敏度及更快的反应动力学. 在本综述中, 我们根据编码方法描述了一些常见的编码微载体, 并且介绍了它们在不同靶标(如蛋白质, 核酸及细胞)的多元生物分析中的应用, 以及在不同领域(如监测食品安全, 药物研究和临床诊断)中的应用.

References

  1. 1

    McLaughlin JL, Rogers LL, Anderson JE. The use of biological assays to evaluate botanicals. Drug Inf J, 1998, 32: 513–524

    Google Scholar 

  2. 2

    Robinson J. Bioassays—a continuously developing field. Drug Discovery Today, 2003, 8: 676–678

    Google Scholar 

  3. 3

    Nolan JP, Sklar LA. Suspension array technology: evolution of the flat-array paradigm. Trends Biotech, 2002, 20: 9–12

    Google Scholar 

  4. 4

    Leng Y, Sun K, Chen X, et al. Suspension arrays based on nanoparticle- encoded microspheres for high-throughput multiplexed detection. Chem Soc Rev, 2015, 44: 5552–5595

    Google Scholar 

  5. 5

    Chin L, Andersen JN, Futreal PA. Cancer genomics: from discovery science to personalized medicine. Nat Med, 2011, 17: 297–303

    Google Scholar 

  6. 6

    Lander ES. Initial impact of the sequencing of the human genome. Nature, 2011, 470: 187–197

    Google Scholar 

  7. 7

    Braeckmans K, De Smedt SC, Leblans M, et al. Encoding microcarriers: present and future technologies. Nat Rev Drug Discov, 2002, 1: 447–456

    Google Scholar 

  8. 8

    Templin MF, Stoll D, Schrenk M, et al. Protein microarray technology. Drug Discovery Today, 2002, 7: 815–822

    Google Scholar 

  9. 9

    Wilson R, Cossins AR, Spiller DG. Encoded microcarriers for high-throughput multiplexed detection. Angew Chem Int Ed, 2006, 45: 6104–6117

    Google Scholar 

  10. 10

    Rao RS, Visuri SR, McBride MT, et al. Comparison of multiplexed techniques for detection of bacterial and viral proteins. J Proteome Res, 2004, 3: 736–742

    Google Scholar 

  11. 11

    Birtwell S, Morgan H. Microparticle encoding technologies for high-throughput multiplexed suspension assays. Integr Biol, 2009, 1: 345

    Google Scholar 

  12. 12

    Houser B. Bio-Rad’s Bio-Plex® suspension array system, xMAP technology overview. Archives Physiol Biochem, 2012, 118: 192–196

    Google Scholar 

  13. 13

    Dunbar SA. Applications of Luminex® xMAPTM technology for rapid, high-throughput multiplexed nucleic acid detection. Clinica Chim Acta, 2006, 363: 71–82

    Google Scholar 

  14. 14

    Xie Z, Cao K, Zhao Y, et al. An optical nose chip based on mesoporous colloidal photonic crystal beads. Adv Mater, 2014, 26: 2413–2418

    Google Scholar 

  15. 15

    Shikha S, Salafi T, Cheng J, et al. Versatile design and synthesis of nano-barcodes. Chem Soc Rev, 2017, 46: 7054–7093

    Google Scholar 

  16. 16

    Zhao Y, Zhao X, Gu Z. Photonic crystals in bioassays. Adv Funct Mater, 2010, 20: 2970–2988

    Google Scholar 

  17. 17

    Porter MD, Lipert RJ, Siperko LM, et al. SERS as a bioassay platform: fundamentals, design, and applications. Chem Soc Rev, 2008, 37: 1001–1011

    Google Scholar 

  18. 18

    Zhao Y, Shang L, Cheng Y, et al. Spherical colloidal photonic crystals. Acc Chem Res, 2014, 47: 3632–3642

    Google Scholar 

  19. 19

    Wang H, Gu H, Chen Z, et al. Enzymatic inverse opal hydrogel particles for biocatalyst. ACS Appl Mater Interfaces, 2017, 9: 12914–12918

    Google Scholar 

  20. 20

    Carter JM, Lin A, Clotilde L, et al. Rapid, multiplexed characterization of shiga toxin-producing Escherichia coli (STEC) isolates using suspension array technology. Front Microbiol, 2016, 7: 439

    Google Scholar 

  21. 21

    Sun Z, Peng Y, Zhang M, et al. Simultaneous and highly sensitive detection of six different foodborne pathogens by high-throughput suspension array technology. Food Control, 2014, 40: 300–309

    Google Scholar 

  22. 22

    Wang H, Shang LR, Gu XX, et al. The preparation and biomedical applications of encoded microcarriers. Prog Chem, 2017, 29: 1159–1172

    Google Scholar 

  23. 23

    Toro M, Najjar MB, Ju W, et al. Molecular serogrouping of Shiga toxin–producing escherichia coli using suspension array. Foodborne Pathogens Dis, 2013, 10: 478–480

    Google Scholar 

  24. 24

    Zhao Y, Cheng Y, Shang L, et al. Microfluidic synthesis of barcode particles for multiplex assays. Small, 2015, 11: 151–174

    Google Scholar 

  25. 25

    Behnke T, Würth C, Hoffmann K, et al. Encapsulation of hydrophobic dyes in polystyrene micro- and nanoparticles via swelling procedures. J Fluoresc, 2011, 21: 937–944

    Google Scholar 

  26. 26

    Wang L, Yang C, Tan W. Dual-luminophore-doped silica nanoparticles for multiplexed signaling. Nano Lett, 2005, 5: 37–43

    Google Scholar 

  27. 27

    Li Y, Cu YTH, Luo D. Multiplexed detection of pathogen DNA with DNA-based fluorescence nanobarcodes. Nat Biotechnol, 2005, 23: 885–889

    Google Scholar 

  28. 28

    Wang L, Tan W. Multicolor FRET silica nanoparticles by single wavelength excitation. Nano Lett, 2006, 6: 84–88

    Google Scholar 

  29. 29

    Mei J, Leung NLC, Kwok RTK, et al. Aggregation-induced emission: together we shine, united we soar! Chem Rev, 2015, 115: 11718–11940

    Google Scholar 

  30. 30

    Han M, Gao X, Su JZ, et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol, 2001, 19: 631–635

    Google Scholar 

  31. 31

    Wang HQ, Wang JH, Li YQ, et al. Multi-color encoding of polystyrene microbeads with CdSe/ZnS quantum dots and its application in immunoassay. J Colloid Interface Sci, 2007, 316: 622–627

    Google Scholar 

  32. 32

    Riegler J, Ehlert O, Nann T. A facile method for coding and labeling assays on polystyrene beads with differently colored luminescent nanocrystals. Anal Bioanal Chem, 2006, 384: 645–650

    Google Scholar 

  33. 33

    Wang X, Ma Q, Li B, et al. The preparation of CdTe nanoparticles and CdTe nanoparticle-labelled microspheres for biological applications. Luminescence, 2007, 22: 1–8

    Google Scholar 

  34. 34

    Rauf S, Glidle A, Cooper JM. Production of quantum dot barcodes using biological self-assembly. Adv Mater, 2009, 21: 4020–4024

    Google Scholar 

  35. 35

    Song F, Tang PS, Durst H, et al. Nonblinking plasmonic quantum dot assemblies for multiplex biological detection. Angew Chem Int Ed, 2012, 51: 8773–8777

    Google Scholar 

  36. 36

    Wilson R, Spiller DG, Prior IA, et al. A simple method for preparing spectrally encoded magnetic beads for multiplexed detection. ACS Nano, 2007, 1: 487–493

    Google Scholar 

  37. 37

    Wang Q, Seo DK. Preparation of photostable quantum dotpolystyrene microbeads through covalent organosilane coupling of CdSe@Zns quantum dots. J Mater Sci, 2009, 44: 816–820

    Google Scholar 

  38. 38

    Vaidya SV, Gilchrist ML, Maldarelli C, et al. Spectral bar coding of polystyrene microbeads using multicolored quantum dots. Anal Chem, 2007, 79: 8520–8530

    Google Scholar 

  39. 39

    Song T, Liu J, Li W, et al. Self-healing encapsulation strategy for preparing highly stable, functionalized quantum-dot barcodes. ACS Appl Mater Interfaces, 2014, 6: 2745–2752

    Google Scholar 

  40. 40

    Wang G, Leng Y, Dou H, et al. Highly efficient preparation of multiscaled quantum dot barcodes for multiplexed hepatitis B detection. ACS Nano, 2013, 7: 471–481

    Google Scholar 

  41. 41

    Liu H, Qian X, Wu Z, et al. Microfluidic synthesis of QD-encoded PEGDA microspheres for suspension assay. J Mater Chem B, 2016, 4: 482–488

    Google Scholar 

  42. 42

    Yeom SY, Son CH, Kim BS, et al. Multiplexed detection of epigenetic markers using quantum dot (QD)-encoded hydrogel microparticles. Anal Chem, 2016, 88: 4259–4268

    Google Scholar 

  43. 43

    Wang X, Wang G, Li W, et al. NIR-emitting quantum dot-encoded microbeads through membrane emulsification for multiplexed immunoassays. Small, 2013, 30

  44. 44

    Zhang Y, Dong C, Su L, et al. Multifunctional microspheres encoded with upconverting nanocrystals and magnetic nanoparticles for rapid separation and immunoassays. ACS Appl Mater Interfaces, 2016, 8: 745–753

    Google Scholar 

  45. 45

    Chen C, Zhang P, Gao G, et al. Near-infrared-emitting two-dimensional codes based on lattice-strained core/(doped) shell quantum dots with long fluorescence lifetime. Adv Mater, 2014, 26: 6313–6317

    Google Scholar 

  46. 46

    Wang H, Liu Z, Wang S, et al. MC540 and upconverting nanocrystal coloaded polymeric liposome for near-infrared light-triggered photodynamic therapy and cell fluorescent imaging. ACS Appl Mater Interfaces, 2014, 6: 3219–3225

    Google Scholar 

  47. 47

    Jiang S, Zhang Y, Lim KM, et al. NIR-to-visible upconversion nanoparticles for fluorescent labeling and targeted delivery of siRNA. Nanotechnology, 2009, 20: 155101

    Google Scholar 

  48. 48

    Huang K, Idris NM, Zhang Y. Engineering of lanthanide-doped upconversion nanoparticles for optical encoding. Small, 2016, 12: 836–852

    Google Scholar 

  49. 49

    Auzel F. Upconversion and anti-stokes processes with f and d ions in solids. Chem Rev, 2004, 104: 139–174

    Google Scholar 

  50. 50

    Page RH, Schaffers KI, Waide PA, et al. Upconversion-pumped luminescence efficiency of rare-earth-doped hosts sensitized with trivalent ytterbium. J Opt Soc Am B, 1998, 15: 996–1008

    Google Scholar 

  51. 51

    You M, Lin M, Wang S, et al. Three-dimensional quick response code based on inkjet printing of upconversion fluorescent nanoparticles for drug anti-counterfeiting. Nanoscale, 2016, 8: 10096–10104

    Google Scholar 

  52. 52

    Zhang Y, Zhang L, Deng R, et al. Multicolor barcoding in a single upconversion crystal. J Am Chem Soc, 2014, 136: 4893–4896

    Google Scholar 

  53. 53

    You M, Zhong J, Hong Y, et al. Inkjet printing of upconversion nanoparticles for anti-counterfeit applications. Nanoscale, 2015, 7: 4423–4431

    Google Scholar 

  54. 54

    Rantanen T, Järvenpää ML, Vuojola J, et al. Fluorescencequenching- based enzyme-activity assay by using photon upconversion. Angew Chem Int Ed, 2008, 47: 3811–3813

    Google Scholar 

  55. 55

    Kim WJ, Nyk M, Prasad PN. Color-coded multilayer photopatterned microstructures using lanthanide (III) ion co-doped NaYF4 nanoparticles with upconversion luminescence for possible applications in security. Nanotechnology, 2009, 20: 185301

    Google Scholar 

  56. 56

    Zhang F, Haushalter RC, Haushalter RW, et al. Rare-earth upconverting nanobarcodes for multiplexed biological detection. Small, 2011, 7: 1972–1976

    Google Scholar 

  57. 57

    Zhang F, Shi Q, Zhang Y, et al. Fluorescence upconversion microbarcodes for multiplexed biological detection: nucleic acid encoding. Adv Mater, 2011, 45

  58. 58

    Gorris HH, Ali R, Saleh SM, et al. Tuning the dual emission of photon-upconverting nanoparticles for ratiometric multiplexed encoding. Adv Mater, 2011, 23: 1652–1655

    Google Scholar 

  59. 59

    Zhang X, Ren Y, Chen M, et al. Fabrication of polystyrene/upconversion nanocrystals nanocomposite spheres through in situ dispersion polymerization. J Colloid Interface Sci, 2011, 358: 347–353

    Google Scholar 

  60. 60

    Chen Z, Chen H, Hu H, et al. Versatile synthesis strategy for carboxylic acid−functionalized upconverting nanophosphors as biological labels. J Am Chem Soc, 2008, 130: 3023–3029

    Google Scholar 

  61. 61

    Boyer JC, Manseau MP, Murray JI, et al. Surface modification of upconverting NaYF4 nanoparticles with PEG−phosphate ligands for NIR (800 nm) biolabeling within the biological window. Langmuir, 2010, 26: 1157–1164

    Google Scholar 

  62. 62

    An M, Cui J, He Q, et al. Down-/up-conversion luminescence nanocomposites for dual-modal cell imaging. J Mater Chem B, 2013, 1: 1333–1339

    Google Scholar 

  63. 63

    Zhang H, Li Y, Ivanov IA, et al. Plasmonic modulation of the upconversion fluorescence in NaYF4:Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells. Angew Chem Int Ed, 2010, 49: 2865–2868

    Google Scholar 

  64. 64

    Liu Q, Chen M, Sun Y, et al. Multifunctional rare-earth selfassembled nanosystem for tri-modal upconversion luminescence /fluorescence /positron emission tomography imaging. Biomaterials, 2011, 32: 8243–8253

    Google Scholar 

  65. 65

    Li Z, Zhang Y. Monodisperse silica-coated polyvinylpyrrolidone/NaYF4 nanocrystals with multicolor upconversion fluorescence emission. Angew Chem Int Ed, 2006, 45: 7732–7735

    Google Scholar 

  66. 66

    Gnach A, Bednarkiewicz A. Lanthanide-doped up-converting nanoparticles: Merits and challenges. Nano Today, 2012, 7: 532–563

    Google Scholar 

  67. 67

    Generalova AN, Kochneva IK, Khaydukov EV, et al. Submicron polyacrolein particles in situ embedded with upconversion nanoparticles for bioassay. Nanoscale, 2015, 7: 1709–1717

    Google Scholar 

  68. 68

    Shang L, Gu Z, Zhao Y. Structural color materials in evolution. Mater Today, 2016, 19: 420–421

    Google Scholar 

  69. 69

    Lee SS, Kim SK, Won JC, et al. Reconfigurable photonic capsules containing cholesteric liquid crystals with planar alignment. Angew Chem Int Ed, 2015, 54: 15266–15270

    Google Scholar 

  70. 70

    Zhao Y, Xie Z, Gu H, et al. Bio-inspired variable structural color materials. Chem Soc Rev, 2012, 41: 3297–3317

    Google Scholar 

  71. 71

    Sim JY, Lee GH, Kim SH. Microfluidic design of magnetoresponsive photonic microcylinders with multicompartments. Small, 2015, 11: 4938–4945

    Google Scholar 

  72. 72

    Darragh PJ, Gaskin AJ, Terrell BC, et al. Origin of precious opal. Nature, 1966, 209: 13–16

    Google Scholar 

  73. 73

    Srinivasarao M. Nano-optics in the biological world: beetles, butterflies, birds, and moths. Chem Rev, 1999, 99: 1935–1962

    Google Scholar 

  74. 74

    Phillips KR, England GT, Sunny S, et al. A colloidoscope of colloid-based porous materials and their uses. Chem Soc Rev, 2016, 45: 281–322

    Google Scholar 

  75. 75

    Zhao Y, Zhao X, Sun C, et al. Encoded silica colloidal crystal beads as supports for potential multiplex immunoassay. Anal Chem, 2008, 80: 1598–1605

    Google Scholar 

  76. 76

    Kanai T, Lee D, Shum HC, et al. Fabrication of tunable spherical colloidal crystals immobilized in soft hydrogels. Small, 2010, 6: 807–810

    Google Scholar 

  77. 77

    Fenzl C, Hirsch T, Wolfbeis OS. Photonic crystals for chemical sensing and biosensing. Angew Chem Int Ed, 2014, 53: 3318–3335

    Google Scholar 

  78. 78

    Ge J, Yin Y. Responsive photonic crystals. Angew Chem Int Ed, 2011, 50: 1492–1522

    Google Scholar 

  79. 79

    Cai Z, Smith NL, Zhang JT, et al. Two-dimensional photonic crystal chemical and biomolecular sensors. Anal Chem, 2015, 87: 5013–5025

    Google Scholar 

  80. 80

    Kanai T, Lee D, Shum HC, et al. Gel-immobilized colloidal crystal shell with enhanced thermal sensitivity at photonic wavelengths. Adv Mater, 2010, 22: 4998–5002

    Google Scholar 

  81. 81

    Ge J, Yin Y. Magnetically responsive colloidal photonic crystals. J Mater Chem, 2008, 18: 5041–5045

    Google Scholar 

  82. 82

    Mao Z, Xu H, Wang D. Molecular mimetic self-assembly of colloidal particles. Adv Funct Mater, 2010, 20: 1053–1074

    Google Scholar 

  83. 83

    Zhao Y, Zhao X, Tang B, et al. Rapid and sensitive biomolecular screening with encoded macroporous hydrogel photonic beads. Langmuir, 2010, 26: 6111–6114

    Google Scholar 

  84. 84

    Bai S, Nguyen TL, Mulvaney P, et al. Using hydrogels to accommodate hydrophobic nanoparticles in aqueous media via solvent exchange. Adv Mater, 2010, 22: 3247–3250

    Google Scholar 

  85. 85

    Chen H, Lou R, Chen Y, et al. Photonic crystal materials and their application in biomedicine. Drug Deliver, 2017, 24: 775–780

    Google Scholar 

  86. 86

    Lifson MA, Miller BL. Photonic crystals as robust label-free biosensors. Springer Ser Mater Sci, 2015, 229: 189–207

    Google Scholar 

  87. 87

    Li Y, Zhou X, Yang Q, et al. Patterned photonic crystals for hiding information. J Mater Chem C, 2017, 5: 4621–4628

    Google Scholar 

  88. 88

    Josephson DP, Miller M, Stein A. Inverse opal SiO2 photonic crystals as structurally-colored pigments with additive primary colors. Z anorg allg Chem, 2014, 640: 655–662

    Google Scholar 

  89. 89

    Shang L, Shangguan F, Cheng Y, et al. Microfluidic generation of magnetoresponsive Janus photonic crystal particles. Nanoscale, 2013, 5: 9553–9557

    Google Scholar 

  90. 90

    Shiu JY, Kuo CW, Chen P, et al. Fabrication of tunable superhydrophobic surfaces by nanosphere lithography. Chem Mater, 2004, 16: 561–564

    Google Scholar 

  91. 91

    Zhao Z, Wang H, Shang L, et al. Bioinspired heterogeneous structural color stripes from capillaries. Adv Mater, 2017, 29: 1704569

    Google Scholar 

  92. 92

    Shi X, Li M, Ye C, et al. Photonic crystal boosted chemiluminescence reaction. Laser Photonics Rev, 2013, 7: L39–L43

    Google Scholar 

  93. 93

    Schäfer CG, Smolin DA, Hellmann GP, et al. Fully reversible shape transition of soft spheres in elastomeric polymer opal films. Langmuir, 2013, 29: 11275–11283

    Google Scholar 

  94. 94

    Gu H, Rong F, Tang B, et al. Photonic crystal beads from gravitydriven microfluidics. Langmuir, 2013, 29: 7576–7582

    Google Scholar 

  95. 95

    Zhou M, Bao J, Xu Y, et al. Photoelectrodes based upon Mo: BiVO4 Inverse opals for photoelectrochemical water splitting. ACS Nano, 2014, 8: 7088–7098

    Google Scholar 

  96. 96

    Kim SH, Shim JW, Yang SM. Microfluidic multicolor encoding of microspheres with nanoscopic surface complexity for multiplex immunoassays. Angew Chem Int Ed, 2011, 50: 1171–1174

    Google Scholar 

  97. 97

    Zhao Y, Xie Z, Gu H, et al. Multifunctional photonic crystal barcodes from microfluidics. NPG Asia Mater, 2012, 4: e25

    Google Scholar 

  98. 98

    Pikul JH,Gang Zhang H, Cho J, et al. High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes. Nat Commun, 2013, 4: 1732

    Google Scholar 

  99. 99

    Fu F, Chen Z, Zhao Z, et al. Bio-inspired self-healing structural color hydrogel. Proc Natl Acad Sci USA, 2017, 114: 5900–5905

    Google Scholar 

  100. 100

    Qin M, Huang Y, Li Y, et al. A rainbow structural-color chip for multisaccharide recognition. Angew Chem Int Ed, 2016, 55: 6911–6914

    Google Scholar 

  101. 101

    Lee HS, Shim TS, Hwang H, et al. Colloidal photonic crystals toward structural color palettes for security materials. Chem Mater, 2013, 25: 2684–2690

    Google Scholar 

  102. 102

    Santos A, Law CS, Pereira T, et al. Nanoporous hard data: optical encoding of information within nanoporous anodic alumina photonic crystals. Nanoscale, 2016, 8: 8091–8100

    Google Scholar 

  103. 103

    Cheng Y, Zhao Y, Shangguan F, et al. Convenient generation of quantum dot-incorporated photonic crystal beads for multiplex bioassays. J Biomed nanotechnol, 2014, 10: 760–766

    Google Scholar 

  104. 104

    Shang L, Fu F, Cheng Y, et al. Photonic crystal microbubbles as suspension barcodes. J Am Chem Soc, 2015, 137: 15533–15539

    Google Scholar 

  105. 105

    Zhao Y, Zhao X, Pei X, et al. Multiplex detection of tumor markers with photonic suspension array. Anal Chim Acta, 2009, 633: 103–108

    Google Scholar 

  106. 106

    Li J, Dong S, Tong J, et al. 3D ordered silver nanoshells silica photonic crystal beads for multiplex encoded SERS bioassay. Chem Commun, 2016, 52: 284–287

    Google Scholar 

  107. 107

    Yan Z, Tian C, Qu X, et al. DNA-functionalized photonic crystal microspheres for multiplex detection of toxic metal ions. Colloids Surfs B-Biointerfaces, 2017, 154: 142–149

    Google Scholar 

  108. 108

    Ye B, Ding H, Cheng Y, et al. Photonic crystal microcapsules for label-free multiplex detection. Adv Mater, 2014, 26: 3270–3274

    Google Scholar 

  109. 109

    Zhang Y, Gao L, Wen L, et al. Highly sensitive, selective and reusable mercury(II) ion sensor based on a ssDNA-functionalized photonic crystal film. Phys Chem Chem Phys, 2013, 15: 11943–11949

    Google Scholar 

  110. 110

    Ye B, Rong F, Gu H, et al. Bioinspired angle-independent photonic crystal colorimetric sensing. Chem Commun, 2013, 49: 5331–5333

    Google Scholar 

  111. 111

    Laing S, Gracie K, Faulds K. Multiplex in vitro detection using SERS. Chem Soc Rev, 2016, 45: 1901–1918

    Google Scholar 

  112. 112

    Chao J, Cao W, Su S, et al. Nanostructure-based surface-enhanced Raman scattering biosensors for nucleic acids and proteins. J Mater Chem B, 2016, 4: 1757–1769

    Google Scholar 

  113. 113

    Liu K, Bai Y, Zhang L, et al. Porous Au–Ag nanospheres with high-density and highly accessible hotspots for SERS analysis. Nano Lett, 2016, 16: 3675–3681

    Google Scholar 

  114. 114

    Mir-Simon B, Reche-Perez I, Guerrini L, et al. Universal one-pot and scalable synthesis of SERS encoded nanoparticles. Chem Mater, 2015, 27: 950–958

    Google Scholar 

  115. 115

    Lai Y, Sun S, He T, et al. Raman-encoded microbeads for spectral multiplexing with SERS detection. RSC Adv, 2016, 5: 13762–13767

    Google Scholar 

  116. 116

    Zhu D, Wang Z, Zong S, et al. Wavenumber–intensity joint SERS encoding using silver nanoparticles for tumor cell targeting. RSC Adv, 2014, 4: 60936–60942

    Google Scholar 

  117. 117

    Li R, Zhang Y, Tan J, et al. Dual-mode encoded magnetic composite microsphere based on fluorescence reporters and raman probes as covert tag for anticounterfeiting applications. ACS Appl Mater Interfaces, 2016, 8: 9384–9394

    Google Scholar 

  118. 118

    Wang Z, Zong S, Li W, et al. SERS-fluorescence joint spectral encoding using organic–metal–qd hybrid nanoparticles with a huge encoding capacity for high-throughput biodetection: putting theory into practice. J Am Chem Soc, 2012, 134: 2993–3000

    Google Scholar 

  119. 119

    Gebrekidan MT, Knipfer C, Stelzle F, et al. A shifted-excitation Raman difference spectroscopy (SERDS) evaluation strategy for the efficient isolation of Raman spectra from extreme fluorescence interference. J Raman Spectrosc, 2016, 47: 198–209

    Google Scholar 

  120. 120

    Nicewarner-Peña SR, Carado AJ, Shale KE, et al. Barcoded metal nanowires: optical reflectivity and patterned fluorescence. J Phys Chem B, 2003, 107: 7360–7367

    Google Scholar 

  121. 121

    Demirok UK, Burdick J, Wang J. Orthogonal multi-readout identification of alloy nanowire barcodes. J Am Chem Soc, 2009, 131: 22–23

    Google Scholar 

  122. 122

    Sattayasamitsathit S, Burdick J, Bash R, et al. Alloy nanowires bar codes based on nondestructive X-ray fluorescence readout. Anal Chem, 2007, 79: 7571–7575

    Google Scholar 

  123. 123

    Evans M, Sewter C, Hill E. An encoded particle array tool for multiplex bioassays. ASSAY Drug Dev Technologies, 2003, 1: 199–207

    Google Scholar 

  124. 124

    Pregibon DC, Toner M, Doyle PS. Multifunctional encoded particles for high-throughput biomolecule analysis. Science, 2007, 315: 1393–1396

    Google Scholar 

  125. 125

    Cederquist KB, Dean SL, Keating CD. Encoded anisotropic particles for multiplexed bioanalysis. WIREs Nanomed Nanobiotechnol, 2010, 2: 578–600

    Google Scholar 

  126. 126

    Lee H, Kim J, Kim H, et al. Colour-barcoded magnetic microparticles for multiplexed bioassays. Nat Mater, 2010, 9: 745–749

    Google Scholar 

  127. 127

    Svedberg G, Jeong Y, Na H, et al. Towards encoded particles for highly multiplexed colorimetric point of care autoantibody detection. Lab Chip, 2017, 17: 549–556

    Google Scholar 

  128. 128

    He B, Son SJ, Lee SB. Shape-coded silica nanotubes for biosensing. Langmuir, 2006, 22: 8263–8265

    Google Scholar 

  129. 129

    Meiring JE, Schmid MJ, Grayson SM, et al. Hydrogel biosensor array platform indexed by shape. Chem Mater, 2004, 16: 5574–5580

    Google Scholar 

  130. 130

    Kim LN, Kim M, Jung K, et al. Shape-encoded silica microparticles for multiplexed bioassays. Chem Commun, 2015, 51: 12130–12133

    Google Scholar 

  131. 131

    Han S, Bae HJ, Kim SD, et al. An encoded viral micropatch for multiplex cell-based assays through localized gene delivery. Lab Chip, 2017, 17: 2435–2442

    Google Scholar 

  132. 132

    Llandro J, Palfreyman JJ, Ionescu A, et al. Magnetic biosensor technologies for medical applications: a review. Med Biol Eng Comput, 2010, 48: 977–998

    Google Scholar 

  133. 133

    Gaster RS, Hall DA, Nielsen CH, et al. Matrix-insensitive protein assays push the limits of biosensors in medicine. Nat Med, 2009, 15: 1327–1332

    Google Scholar 

  134. 134

    Yoon SJ, Kim BG, Tak Jeon I, et al. Compositional dependence of magnetic properties in cofe/au nanobarcodes. Appl Phys Express, 2012, 5: 103003

    Google Scholar 

  135. 135

    Hong B, Jeong JR, Llandro J, et al. High throughput biological analysis using multi-bit magnetic digital planar tags. AIP Conf Proc, 2008, 1025: 74

    Google Scholar 

  136. 136

    Love DM, Vyas KN, Fernández-Pacheco A, et al. A composite element bit design for magnetically encoded microcarriers for future combinatorial chemistry applications. RSC Adv, 2015, 5: 10211–10218

    Google Scholar 

  137. 137

    Pan J, Feng SS. Targeting and imaging cancer cells by folatedecorated, quantum dots (QDs)- loaded nanoparticles of biodegradable polymers. Biomaterials, 2009, 30: 1176–1183

    Google Scholar 

  138. 138

    Li J, Wang H, Dong S, et al. Quantum-dot-tagged photonic crystal beads for multiplex detection of tumor markers. Chem Commun, 2014, 50: 14589–14592

    Google Scholar 

  139. 139

    Xie M, Hu J, Wen CY, et al. Fluorescent–magnetic dual-encoded nanospheres: a promising tool for fast-simultaneous-addressable high-throughput analysis. Nanotechnology, 2012, 23: 035602

    Google Scholar 

  140. 140

    Zhang DS, Jiang Y, Yang H, et al. Dual-encoded microbeads through a host-guest structure: enormous, flexible, and accurate barcodes for multiplexed assays. Adv Funct Mater, 2016, 26: 6146–6157

    Google Scholar 

  141. 141

    Lu S, Zhang DS, Wei D, et al. Three-dimensional barcodes with ultrahigh encoding capacities: a flexible, accurate, and reproducible encoding strategy for suspension arrays. Chem Mater, 2017, 29: 10398–10408

    Google Scholar 

  142. 142

    Qing Z, He X, Wang K, et al. Colorimetric multiplexed analysis of mercury and silver ions by using a unimolecular DNA probe and unmodified gold nanoparticles. Anal Methods, 2012, 4: 3320–3325

    Google Scholar 

  143. 143

    Wang C, Li X, Zhang F. Bioapplications and biotechnologies of upconversion nanoparticle-based nanosensors. Analyst, 2016, 141: 3601–3620

    Google Scholar 

  144. 144

    Chen J, Li Y, Lv K, et al. Cyclam-functionalized carbon dots sensor for sensitive and selective detection of copper(II) ion and sulfide anion in aqueous media and its imaging in live cells. Senss Actuators B-Chem, 2016, 224: 298–306

    Google Scholar 

  145. 145

    Colon M, Todolí JL, Hidalgo M, et al. Development of novel and sensitive methods for the determination of sulfide in aqueous samples by hydrogen sulfide generation-inductively coupled plasma-atomic emission spectroscopy. Anal Chim Acta, 2008, 609: 160–168

    Google Scholar 

  146. 146

    Eto K, Asada T, Arima K, et al. Brain hydrogen sulfide is severely decreased in Alzheimer’s disease. Biochem BioPhys Res Commun, 2002, 293: 1485–1488

    Google Scholar 

  147. 147

    Zuo P, Yin BC, Ye BC. DNAzyme-based microarray for highly sensitive determination of metal ions. Biosens Bioelectron, 2009, 25: 935–939

    Google Scholar 

  148. 148

    Tahán JE, Granadillo VA, Romero RA. Electrothermal atomic absorption spectrometric determination of Al, Cu, Fe, Pb, V and Zn in clinical samples and in certified environmental reference materials. Anal Chim Acta, 1994, 295: 187–197

    Google Scholar 

  149. 149

    Etienne M, Bessiere J, Walcarius A. Voltammetric detection of copper(II) at a carbon paste electrode containing an organically modified silica. Senss Actuators B-Chem, 2001, 76: 531–538

    Google Scholar 

  150. 150

    Liu HW, Jiang SJ, Liu SH. Determination of cadmium, mercury and lead in seawater by electrothermal vaporization isotope dilution inductively coupled plasma mass spectrometry. Spectro-Chim Acta Part B-Atomic Spectr, 1999, 54: 1367–1375

    Google Scholar 

  151. 151

    Liu F, Ha HD, Han DJ, et al. Photoluminescent graphene oxide microarray for multiplex heavy metal ion analysis. Small, 2013, 9: 3410–3414

    Google Scholar 

  152. 152

    Zhang Y, Zuo P, Ye BC. A low-cost and simple paper-based microfluidic device for simultaneous multiplex determination of different types of chemical contaminants in food. Biosens Bioelectron, 2015, 68: 14–19

    Google Scholar 

  153. 153

    Yan H, Tang NM, Jairo GA, et al. High-sensitivity highthroughput chip based biosensor array for multiplexed detection of heavy metals. Proc SPIE, 2016, 9725

  154. 154

    Gao W, Nyein HYY, Shahpar Z, et al. Wearable microsensor array for multiplexed heavy metal monitoring of body fluids. ACS Sens, 2016, 1: 866–874

    Google Scholar 

  155. 155

    Zhou Y, Tang L, Zeng G, et al. Current progress in biosensors for heavy metal ions based on DNAzymes/DNA molecules functionalized nanostructures: A review. Senss Actuators B-Chem, 2016, 223: 280–294

    Google Scholar 

  156. 156

    Liu M, Zhao H, Chen S, et al. A “turn-on” fluorescent copper biosensor based on DNA cleavage-dependent graphene-quenched DNAzyme. Biosens Bioelectron, 2011, 26: 4111–4116

    Google Scholar 

  157. 157

    He Y, Tian J, Zhang J, et al. DNAzyme self-assembled gold nanorods- based FRET or polarization assay for ultrasensitive and selective detection of copper(II) ion. Biosens Bioelectron, 2014, 55: 285–288

    Google Scholar 

  158. 158

    Clever GH, Kaul C, Carell T. DNA-metal base pairs. Angew Chem Int Ed, 2007, 46: 6226–6236

    Google Scholar 

  159. 159

    Willner I, Zayats M. Electronic aptamer-based sensors. Angew Chem Int Ed, 2007, 46: 6408–6418

    Google Scholar 

  160. 160

    Liu J, Cao Z, Lu Y. Functional nucleic acid sensors. Chem Rev, 2009, 109: 1948–1998

    Google Scholar 

  161. 161

    Wang Z, Heon Lee J, Lu Y. Highly sensitive “turn-on” fluorescent sensor for Hg2+ in aqueous solution based on structure-switching DNA. Chem Commun, 2008, 172: 6005–6007

    Google Scholar 

  162. 162

    Wu CS, Khaing Oo MK, Fan X. Highly sensitive multiplexed heavy metal detection using quantum-dot-labeled DNAzymes. ACS Nano, 2010, 4: 5897–5904

    Google Scholar 

  163. 163

    Li D, Wieckowska A, Willner I. Optical Analysis of Hg2+ ions by oligonucleotide-gold-nanoparticle hybrids and DNA-based machines. Angew Chem Int Ed, 2008, 47: 3927–3931

    Google Scholar 

  164. 164

    Freeman R, Finder T, Willner I. Multiplexed analysis of Hg2+ and Ag+ ions by nucleic acid functionalized CdSe/ZnS quantum dots and their use for logic gate operations. Angew Chem Int Ed, 2009, 48: 7818–7821

    Google Scholar 

  165. 165

    del Mercato LL, Abbasi AZ, Ochs M, et al. Multiplexed sensing of ions with barcoded polyelectrolyte capsules. ACS Nano, 2011, 5: 9668–9674

    Google Scholar 

  166. 166

    Ashraf S, Carrillo-Carrion C, Zhang Q, et al. Fluorescence-based ion-sensing with colloidal particles. Curr Opin Pharmacol, 2014, 18: 98–103

    Google Scholar 

  167. 167

    Li S, Xu L, Ma W, et al. Triple Raman label-encoded gold nanoparticle trimers for simultaneous heavy metal ion detection. Small, 2015, 11: 3435–3439

    Google Scholar 

  168. 168

    Zeng Y, Ren J, Shen A, et al. Field and pretreatment-free detection of heavy-metal ions in organic polluted water through an alkyne-coded SERS test kit. ACS Appl Mater Interfaces, 2016, 8: 27772–27778

    Google Scholar 

  169. 169

    Yu L, Liu X, Yuan W, et al. Confined flocculation of ionic pollutants by poly(l-dopa)-based polyelectrolyte complexes in hydrogel beads for three-dimensional, quantitative, efficient water decontamination. Langmuir, 2015, 31: 6351–6366

    Google Scholar 

  170. 170

    Culha M. Surface-enhanced Raman scattering: An emerging label- free detection and identification technique for proteins. Appl Spectrosc, 2013, 67: 355–364

    Google Scholar 

  171. 171

    Zhang H, Zhao Q, Li XF, et al. Ultrasensitive assays for proteins. Analyst, 2007, 132: 724–737

    Google Scholar 

  172. 172

    Jun BH, Kang H, Lee YS, et al. Fluorescence-based multiplex protein detection using optically encoded microbeads. Molecules, 2012, 17: 2474–2490

    Google Scholar 

  173. 173

    Gstaiger M, Aebersold R. Applying mass spectrometry-based proteomics to genetics, genomics and network biology. Nat Rev Genet, 2009, 10: 617–627

    Google Scholar 

  174. 174

    Han X, Aslanian A, Yates Iii JR. Mass spectrometry for proteomics. Curr Opin Chem Biol, 2008, 12: 483–490

    Google Scholar 

  175. 175

    Armstrong EG, Ehrlich PH, Birken S, et al. Use of a highly sensitive and specific immunoradiometric assay for detection of human chorionic gonadotropin in urine of normal, nonpregnaiit, and pregnant individuals. J Clinical Endocrinology Metabolism, 1984, 59: 867–874

    Google Scholar 

  176. 176

    Grossman HB, Messing E, Soloway M, et al. Detection of bladder cancer using a point-of-care proteomic assay. JAMA, 2005, 293: 810–816

    Google Scholar 

  177. 177

    Herbáth M, Papp K, Balogh A, et al. Exploiting fluorescence for multiplex immunoassays on protein microarrays. Methods Appl Fluoresc, 2014, 2: 032001

    Google Scholar 

  178. 178

    Kingsmore SF. Multiplexed protein measurement: technologies and applications of protein and antibody arrays. Nat Rev Drug Discov, 2006, 5: 310–321

    Google Scholar 

  179. 179

    Rousserie G, Sukhanova A, Even-Desrumeaux K, et al. Semiconductor quantum dots for multiplexed bio-detection on solidstate microarrays. Critical Rev Oncology/Hematology, 2010, 74: 1–15

    Google Scholar 

  180. 180

    Bock C, Coleman M, Collins B, et al. Photoaptamer arrays applied to multiplexed proteomic analysis. PROTEOMICS, 2004, 4: 609–618

    Google Scholar 

  181. 181

    Usui K, Tomizaki KY, Mihara H. Screening of α-helical peptide ligands controlling a calcineurin-phosphatase activity. BioOrg Medicinal Chem Lett, 2007, 17: 167–171

    Google Scholar 

  182. 182

    Tessier PM, Lindquist S. Prion recognition elements govern nucleation, strain specificity and species barriers. Nature, 2007, 447: 556–561

    Google Scholar 

  183. 183

    Syahir A, Usui K, Tomizaki KY, et al. Label and label-free detection techniques for protein microarrays. Microarrays, 2015, 4: 228–244

    Google Scholar 

  184. 184

    Zhao Y, Zhao X, Hu J, et al. Encoded porous beads for label-free multiplex detection of tumor markers. Adv Mater, 2009, 21: 569–572

    Google Scholar 

  185. 185

    Xu Y, Zhang X, Luan C, et al. Hybrid hydrogel photonic barcodes for multiplex detection of tumor markers. Biosens Bioelectron, 2017, 87: 264–270

    Google Scholar 

  186. 186

    Appleyard DC, Chapin SC, Srinivas RL, et al. Bar-coded hydrogel microparticles for protein detection: synthesis, assay and scanning. Nat Protoc, 2011, 6: 1761–1774

    Google Scholar 

  187. 187

    Luan C, Xu Y, Fu F, et al. Responsive photonic barcodes for sensitive multiplex bioassay. Nanoscale, 2017, 9: 14111–14117

    Google Scholar 

  188. 188

    Gong X, Yan H, Yang J, et al. High-performance fluorescenceencoded magnetic microbeads as microfluidic protein chip supports for AFP detection. Anal Chim Acta, 2016, 939: 84–92

    Google Scholar 

  189. 189

    Liu B, Ni H, Zhang D, et al. Ultrasensitive detection of protein with wide linear dynamic range based on core–shell SERS nanotags and photonic crystal beads. ACS Sens, 2017, 2: 1035–1043

    Google Scholar 

  190. 190

    Xu L, Yan W, Ma W, et al. SERS encoded silver pyramids for attomolar detection of multiplexed disease biomarkers. Adv Mater, 2015, 27: 1706–1711

    Google Scholar 

  191. 191

    Zhao YJ, Zhao XW, Hu J, et al. Multiplex label-free detection of biomolecules with an imprinted suspension array. Angew Chem Int Ed, 2009, 48: 7350–7352

    Google Scholar 

  192. 192

    Hou J, Zhang H, Yang Q, et al. Hydrophilic-hydrophobic patterned molecularly imprinted photonic crystal sensors for highsensitive colorimetric detection of tetracycline. Small, 2015, 11: 2738–2742

    Google Scholar 

  193. 193

    Wang H, Xu Q, Shang L, et al. Boronate affinity molecularly imprinted inverse opal particles for multiple label-free bioassays. Chem Commun, 2016, 52: 3296–3299

    Google Scholar 

  194. 194

    Wu S, Liu L, Li G, et al. Multiplexed detection of lung cancer biomarkers based on quantum dots and microbeads. Talanta, 2016, 156–157: 48–54

    Google Scholar 

  195. 195

    Bilan R, Ametzazurra A, Brazhnik K, et al. Quantum-dot-based suspension microarray for multiplex detection of lung cancer markers: preclinical validation and comparison with the Luminex xMAP® system. Sci Rep, 2017, 7: 44668

    Google Scholar 

  196. 196

    Liu N, Liang W, Ma X, et al. Simultaneous and combined detection of multiple tumor biomarkers for prostate cancer in hu-man serum by suspension array technology. Biosens Bioelectron, 2013, 47: 92–98

    Google Scholar 

  197. 197

    Lu W, Fu C, Chen Y, et al. Multiplex detection of B-type natriuretic peptide, cardiac troponin I and C-reactive protein with photonic suspension array. PLoS ONE, 2012, 7: e41448

    Google Scholar 

  198. 198

    Tang L, Casas J. Quantification of cardiac biomarkers using labelfree and multiplexed gold nanorod bioprobes for myocardial infarction diagnosis. Biosens Bioelectron, 2014, 61: 70–75

    Google Scholar 

  199. 199

    Xu H, Zhang J, Xu Y, et al. Down’s syndrome screening with hydrogel photonic barcodes. Senss Actuators B-Chem, 2018, 255: 2690–2696

    Google Scholar 

  200. 200

    Haasnoot W, du Pré JG. Luminex-based triplex immunoassay for the simultaneous detection of soy, pea, and soluble wheat proteins in milk powder. J Agric Food Chem, 2007, 55: 3771–3777

    Google Scholar 

  201. 201

    Tan A, Lim C, Zou S, et al. Electrochemical nucleic acid biosensors: from fabrication to application. Anal Methods, 2016, 8: 5169–5189

    Google Scholar 

  202. 202

    Deshpande A, White PS. Multiplexed nucleic acid-based assays for molecular diagnostics of human disease. Expert Rev Mol Diagnostics, 2012, 12: 645–659

    Google Scholar 

  203. 203

    Markou A, Strati A, Malamos N, et al. Molecular characterization of circulating tumor cells in breast cancer by a liquid bead array hybridization assay. Clinical Chem, 2011, 57: 421–430

    Google Scholar 

  204. 204

    Shin SH, Shin GW, Yim SH, et al. Strategy for high-fidelity multiplex DNA copy number assay system using capillary electrophoresis devices. Electrophoresis, 2011, 32: 1837–1843

    Google Scholar 

  205. 205

    Sankuntaw N, Sukprasert S, Engchanil C, et al. Single tube multiplex real-time PCR for the rapid detection of herpesvirus infections of the central nervous system. Mol Cellular Probes, 2011, 25: 114–120

    Google Scholar 

  206. 206

    Sanghavi SK, Bullotta A, Husain S, et al. Clinical evaluation of multiplex real-time PCR panels for rapid detection of respiratory viral infections. J Med Virol, 2012, 84: 162–169

    Google Scholar 

  207. 207

    Deshpande A, Wheeler CM, Hunt WC, et al. Variation in HLA class I antigen-processing genes and susceptibility to human papillomavirus type 16—associated cervical cancer. J INFECT DIS, 2008, 197: 371–381

    Google Scholar 

  208. 208

    Lau LT, Feng XY, Lam TY, et al. Development of multiplex nucleic acid sequence-based amplification for detection of human respiratory tract viruses. J Virological Methods, 2010, 168: 251–254

    Google Scholar 

  209. 209

    Deshpande A, Gans J, Graves SW, et al. A rapid multiplex assay for nucleic acid-based diagnostics. J MicroBiol Methods, 2010, 80: 155–163

    Google Scholar 

  210. 210

    Hegde MR, Chin ELH, Mulle JG, et al. Microarray-based mutation detection in the dystrophin gene. Hum Mutat, 2008, 29: 1091–1099

    Google Scholar 

  211. 211

    Zhou WJ, Chen Y, Corn RM. Ultrasensitive microarray detection of short RNA sequences with enzymatically modified nanoparticles and surface plasmon resonance imaging measurements. Anal Chem, 2011, 83: 3897–3902

    Google Scholar 

  212. 212

    Kao LTH, Shankar L, Kang TG, et al. Multiplexed detection and differentiation of the DNA strains for influenza A (H1N1 2009) using a silicon-based microfluidic system. Biosens Bioelectron, 2011, 26: 2006–2011

    Google Scholar 

  213. 213

    Zhang Y, Zhang L, Sun J, et al. Point-of-care multiplexed assays of nucleic acids using microcapillary-based loop-mediated isothermal amplification. Anal Chem, 2014, 86: 7057–7062

    Google Scholar 

  214. 214

    Sha MY, Walton ID, Norton SM, et al. Multiplexed SNP genotyping using nanobarcode particle technology. Anal Bioanal Chem, 2006, 384: 658–666

    Google Scholar 

  215. 215

    Gao Y, Stanford WL, Chan WCW. Quantum-dot-encoded microbeads for multiplexed genetic detection of non-amplified DNA samples. Small, 2011, 7: 137–146

    Google Scholar 

  216. 216

    Chapin SC, Doyle PS. Ultrasensitive multiplexed microRNA quantification on encoded gel microparticles using rolling circle amplification. Anal Chem, 2011, 83: 7179–7185

    Google Scholar 

  217. 217

    Xu Y, Wang H, Luan C, et al. Porous hydrogel encapsulated photonic barcodes for multiplex microRNA quantification. Adv Funct Mater, 2018, 28: 1704458

    Google Scholar 

  218. 218

    Zhao B, Shen J, Chen S, et al. Gold nanostructures encoded by non-fluorescent small molecules in polyA-mediated nanogaps as universal SERS nanotags for recognizing various bioactive molecules. Chem Sci, 2014, 5: 4460–4466

    Google Scholar 

  219. 219

    Wang X, Choi N, Cheng Z, et al. Simultaneous detection of dual nucleic acids using a SERS-based lateral flow assay biosensor. Anal Chem, 2017, 89: 1163–1169

    Google Scholar 

  220. 220

    Zhao Y, Zhao X, Tang B, et al. Quantum-dot-tagged bioresponsive hydrogel suspension array for multiplex label-free DNA detection. Adv Funct Mater, 2010, 20: 976–982

    Google Scholar 

  221. 221

    He B, Morrow TJ, Keating CD. Nanowire sensors for multiplexed detection of biomolecules. Curr Opin Chem Biol, 2008, 12: 522–528

    Google Scholar 

  222. 222

    Liu X, Wang F, Aizen R, et al. Graphene oxide/nucleic-acid-stabilized silver nanoclusters: functional hybrid materials for optical aptamer sensing and multiplexed analysis of pathogenic DNAs. J Am Chem Soc, 2013, 135: 11832–11839

    Google Scholar 

  223. 223

    Ma L, Hong Y, Ma Z, et al. Multiplexed highly sensitive detections of cancer biomarkers in thermal space using encapsulated phase change nanoparticles. Appl Phys Lett, 2009, 95: 043701

    Google Scholar 

  224. 224

    Boyerinas B, Park SM, Hau A, et al. The role of let-7 in cell differentiation and cancer. Endocrine Related Cancer, 2010, 17: F19–F36

    Google Scholar 

  225. 225

    Jiang L, Shen Y, Zheng K, et al. Rapid and multiplex microRNA detection on graphically encoded silica suspension array. Biosens Bioelectron, 2014, 61: 222–226

    Google Scholar 

  226. 226

    Hauck TS, Giri S, Gao Y, et al. Nanotechnology diagnostics for infectious diseases prevalent in developing countries. Adv Drug Deliver Rev, 2010, 62: 438–448

    Google Scholar 

  227. 227

    Kim J, Biondi MJ, Feld JJ, et al. Clinical validation of quantum dot barcode diagnostic technology. ACS Nano, 2016, 10: 4742–4753

    Google Scholar 

  228. 228

    Giri S, Sykes EA, Jennings TL, et al. Rapid screening of genetic biomarkers of infectious agents using quantum dot barcodes. ACS Nano, 2011, 5: 1580–1587

    Google Scholar 

  229. 229

    Ming K, Kim J, Biondi MJ, et al. Integrated quantum dot barcode smartphone optical device for wireless multiplexed diagnosis of infected patients. ACS Nano, 2015, 9: 3060–3074

    Google Scholar 

  230. 230

    Wang HY, Hua XW, Jia HR, et al. Universal cell surface imaging for mammalian, fungal, and bacterial cells. ACS Biomater Sci Eng, 2016, 2: 987–997

    Google Scholar 

  231. 231

    Wang HY, Jia HR, Lu X, et al. Imaging plasma membranes without cellular internalization: multisite membrane anchoring reagents based on glycol chitosan derivatives. J Mater Chem B, 2015, 3: 6165–6173

    Google Scholar 

  232. 232

    Zhang X, Chen X, Yang J, et al. Quaternized silicon nanoparticles with polarity-sensitive fluorescence for selectively imaging and killing gram-positive bacteria. Adv Funct Mater, 2016, 26: 5958–5970

    Google Scholar 

  233. 233

    Chen PJ, Hu SH, Hung WT, et al. Geometrical confinement of quantum dots in porous nanobeads with ultraefficient fluores-cence for cell-specific targeting and bioimaging. J Mater Chem, 2012, 22: 9568–9575

    Google Scholar 

  234. 234

    Kuo CT, Peng HS, Rong Y, et al. Optically encoded semiconducting polymer dots with single-wavelength excitation for barcoding and tracking of single cells. Anal Chem, 2017, 89: 6232–6238

    Google Scholar 

  235. 235

    Zavaleta CL, Smith BR, Walton I, et al. Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy. Proc Natl Acad Sci USA, 2009, 106: 13511–13516

    Google Scholar 

  236. 236

    Lee S, Chon H, Lee J, et al. Rapid and sensitive phenotypic marker detection on breast cancer cells using surface-enhanced Raman scattering (SERS) imaging. Biosens Bioelectron, 2014, 51: 238–243

    Google Scholar 

  237. 237

    Jimenez de Aberasturi D, Serrano-Montes AB, Langer J, et al. Surface enhanced Raman scattering encoded gold nanostars for multiplexed cell discrimination. Chem Mater, 2016, 28: 6779–6790

    Google Scholar 

  238. 238

    Macosko EZ, Basu A, Satija R, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell, 2015, 161: 1202–1214

    Google Scholar 

  239. 239

    Klein AM, Mazutis L, Akartuna I, et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell, 2015, 161: 1187–1201

    Google Scholar 

  240. 240

    Kang WJ, Chae JR, Cho YL, et al. Multiplex imaging of single tumor cells using quantum-dot-conjugated aptamers. Small, 2009, 5: 2519–2522

    Google Scholar 

  241. 241

    Nwankire CE, Venkatanarayanan A, Glennon T, et al. Label-free impedance detection of cancer cells from whole blood on an integrated centrifugal microfluidic platform. Biosens Bioelectron, 2015, 68: 382–389

    Google Scholar 

  242. 242

    Lu J, Zheng F, Cheng Y, et al. Hybrid inverse opals for regulating cell adhesion and orientation. Nanoscale, 2014, 6: 10650–10656

    Google Scholar 

  243. 243

    Zhang B, Cai Y, Shang L, et al. A photonic crystal hydrogel suspension array for the capture of blood cells from whole blood. Nanoscale, 2016, 8: 3841–3847

    Google Scholar 

  244. 244

    Maiti KK, Samanta A, Vendrell M, et al. Multiplex cancer cell detection by SERS nanotags with cyanine and triphenylmethine Raman reporters. Chem Commun, 2011, 47: 3514–3516

    Google Scholar 

  245. 245

    Yang G, Liu H, Liu X, et al. Underwater-transparent nanodendritic coatings for directly monitoring cancer cells. Adv Healthcare Mater, 2014, 3: 332–337

    Google Scholar 

  246. 246

    Hao HC, Yao DJ. Detection of cancer cells on a chip. CTMC, 2015, 15: 1543–1550

    Google Scholar 

  247. 247

    Meng J, Zhang P, Zhang F, et al. A self-cleaning TiO2 nanosisallike coating toward disposing nanobiochips of cancer detection. ACS Nano, 2015, 9: 9284–9291

    Google Scholar 

  248. 248

    Alix-Panabieres C, Pantel K. Circulating tumor cells: liquid biopsy of cancer. Clinical Chem, 2013, 59: 110–118

    Google Scholar 

  249. 249

    Wang S, Liu K, Liu J, et al. Highly efficient capture of circulating tumor cells by using nanostructured silicon substrates with integrated chaotic micromixers. Angew Chem Int Ed, 2011, 50: 3084–3088

    Google Scholar 

  250. 250

    Zheng F, Cheng Y, Wang J, et al. Aptamer-functionalized barcode particles for the capture and detection of multiple types of circulating tumor cells. Adv Mater, 2014, 26: 7333–7338

    Google Scholar 

  251. 251

    Liu W, Shang L, Zheng F, et al. Photonic crystal encoded microcarriers for biomaterial evaluation. Small, 2014, 10: 88–93

    Google Scholar 

  252. 252

    Fu F, Shang L, Zheng F, et al. Cells cultured on core–shell photonic crystal barcodes for drug screening. ACS Appl Mater Interfaces, 2016, 8: 13840–13848

    Google Scholar 

  253. 253

    Andreiuk B, Reisch A, Lindecker M, et al. Fluorescent polymer nanoparticles for cell barcoding in vitro and in vivo. Small, 2017, 13: 1701582

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (21473029 and 51522302), the NSAF Foundation of China (U1530260), the Key Medical Projects of Jiangsu Province ( BL2014078), Key Discipline of Jiangsu Province (2016–2020), the National Science Foundation of Jiangsu (BK20140028), and the Scientific Research Foundation of Southeast University.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Baoan Chen 陈宝安 or Hong Liu 刘宏 or Yuanjin Zhao 赵远锦.

Additional information

Yueshuang Xu is currently a PhD student at Southeast University and is studying as a visiting student at Stanford University in Prof. Jianghong Rao’s group. Under the guidance of Prof. Yuanjin Zhao, her research focuses on the study of multiplex cancer detection based on photonic crystal barcode particles.

Yuanjin Zhao received his PhD in 2011 from Southeast University. He then worked as a lecturer at the State Key Laboratory of Bio-electronics. In 2012, he was promoted to be an associate professor of Southeast University. In 2009–2010, he worked as a research scholar at Prof. David A. Weitz’s group in SEAS of Harvard University. His current scientific interests include microfluidic-based materials fabrication, biosensors, and bio-inspired photonic nanomaterials.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Wang, H., Chen, B. et al. Emerging barcode particles for multiplex bioassays. Sci. China Mater. 62, 289–324 (2019). https://doi.org/10.1007/s40843-018-9330-5

Download citation

Keywords

  • barcode
  • suspension array
  • bioassay
  • multiplex
  • particle