Science China Materials

, Volume 62, Issue 1, pp 8–24 | Cite as

Copper chalcogenide thermoelectric materials

  • Tian-Ran Wei (魏天然)
  • Yuting Qin (覃玉婷)
  • Tingting Deng (邓婷婷)
  • Qingfeng Song (宋庆峰)
  • Binbin Jiang (江彬彬)
  • Ruiheng Liu (刘睿恒)
  • Pengfei Qiu (仇鹏飞)
  • Xun Shi (史迅)Email author
  • Lidong Chen (陈立东)


Cu-based chalcogenides have received increasing attention as promising thermoelectric materials due to their high efficiency, tunable transport properties, high elemental abundance and low toxicity. In this review, we summarize the recent research progress on this large family compounds covering diamond-like chalcogenides and liquid-like Cu2X (X=S, Se, Te) binary compounds as well as their multinary derivatives. These materials have the general features of two sublattices to decouple electron and phonon transport properties. On the one hand, the complex crystal structure and the disordered or even liquid-like sublattice bring about an intrinsically low lattice thermal conductivity. On the other hand, the rigid sublattice constitutes the charge-transport network, maintaining a decent electrical performance. For specific material systems, we demonstrate their unique structural features and outline the structure-performance correlation. Various design strategies including doping, alloying, band engineering and nanostructure architecture, covering nearly all the material scale, are also presented. Finally, the potential of the application of Cu-based chalcogenides as high-performance thermoelectric materials is briefly discussed from material design to device development.


thermoelectric Cu-based chalcogenides sublattice transport properties 



铜基硫族化合物因其高性能、可调的输运性质、高丰度和低毒性, 被认为是很有前景的新型热电材料, 引起了研究者的广泛关注.本文总结了近年来铜基热电材料的研究进展, 包括类金刚石结构材料、声子液体二元及多元化合物等. 本文首先总体介绍了两套亚晶格的基本特征及其对热学、电学性质的影响: 一方面, 复杂晶体结构和无序、甚至液态化的亚晶格导致极低的热导率; 另一方面, 刚性亚晶格构成电荷传输通道, 保证了较高的电学性能. 然后, 本文针对特定的几类材料体系, 详细介绍了其典型结构特征与“结构-性能”构效关系, 以及掺杂、固溶、能带结构调控和纳米结构设计等多尺度优化手段. 最后, 本文从材料研发和器件研制的角度评述了铜基硫族化合物作为热电材料的应用前景及相关进展.



This review is supported by the National Key Research and Development Program of China (2018YFB0703600), the National Natural Science Foundation of China (51625205), the Key Research Program of Chinese Academy of Sciences (KFZD-SW-421), Program of Shanghai Subject Chief Scientist (16XD1403900), Youth Innovation Promotion Association, CAS (2016232) and Shanghai Sailing Program (18YF1426700).


  1. 1.
    Nolas GS, Sharp J, Goldsmid HJ. Thermoelectrics: Basic Principles and New Materials Developments. Berlin: Springer, 2001Google Scholar
  2. 2.
    Uher C eds. Materials Aspect of Thermoelectricity. Boca Raton: CRC Press, 2017Google Scholar
  3. 3.
    Zhu T, Liu Y, Fu C, et al. Compromise and synergy in highefficiency thermoelectric materials. Adv Mater, 2017, 29: 1605884Google Scholar
  4. 4.
    Yang J, Xi L, Qiu W, et al. On the tuning of electrical and thermal transport in thermoelectrics: an integrated theory–experiment perspective. NPJ Comput Mater, 2016, 2: 15015Google Scholar
  5. 5.
    Slack GA. New Materials and Performance Limits for Thermoelectric Cooling. In: Rowe DM eds. CRC Handbook of Thermoelectrics. Boca Raton: CRC Press, 1995: 407–440Google Scholar
  6. 6.
    Snyder GJ, Toberer ES. Complex thermoelectric materials. Nat Mater, 2008, 7: 105–114Google Scholar
  7. 7.
    He J, Tritt TM. Advances in thermoelectric materials research: Looking back and moving forward. Science, 2017, 357: eaak9997Google Scholar
  8. 8.
    Tan G, Zhao LD, Kanatzidis MG. Rationally designing highperformance bulk thermoelectric materials. Chem Rev, 2016, 116: 12123–12149Google Scholar
  9. 9.
    Liu W, Yin K, Zhang Q, et al. Eco-friendly high-performance silicide thermoelectric materials. Natl Sci Rev, 2017, 4: 611–626Google Scholar
  10. 10.
    Liu W, Jie Q, Kim HS, et al. Current progress and future challenges in thermoelectric power generation: From materials to devices. Acta Mater, 2015, 87: 357–376Google Scholar
  11. 11.
    Li JF, Pan Y, Wu CF, et al. Processing of advanced thermoelectric materials. Sci China Technol Sci, 2017, 60: 1347–1364Google Scholar
  12. 12.
    Qiu P, Shi X, Chen L. Cu-based thermoelectric materials. Energy Storage Mater, 2016, 3: 85–97Google Scholar
  13. 13.
    Xiao XX, Xie WJ, Tang XF, et al. Phase transition and high temperature thermoelectric properties of copper selenide Cu2−xSe 0≤x≤0.25. Chin Phys B, 2011, 20: 087201Google Scholar
  14. 14.
    Liu H, Shi X, Xu F, et al. Copper ion liquid-like thermoelectrics. Nat Mater, 2012, 11: 422–425Google Scholar
  15. 15.
    Liu H, Yuan X, Lu P, et al. Ultrahigh thermoelectric performance by electron and phonon critical scattering in Cu2Se1−xIx. Adv Mater, 2013, 25: 6607–6612Google Scholar
  16. 16.
    He Y, Day T, Zhang T, et al. High thermoelectric performance in non-toxic earth-abundant copper sulfide. Adv Mater, 2014, 26: 3974–3978Google Scholar
  17. 17.
    He Y, Lu P, Shi X, et al. Ultrahigh thermoelectric performance in mosaic crystals. Adv Mater, 2015, 27: 3639–3644Google Scholar
  18. 18.
    He Y, Zhang T, Shi X, et al. High thermoelectric performance in copper telluride. NPG Asia Mater, 2015, 7: e210Google Scholar
  19. 19.
    Zhao L, Wang X, Fei FY, et al. High thermoelectric and mechanical performance in highly dense Cu2−xS bulks prepared by a melt-solidification technique. J Mater Chem A, 2015, 3: 9432–9437Google Scholar
  20. 20.
    Zhao LL, Wang XL, Wang JY, et al. Superior intrinsic thermoelectric performance with zT of 1.8 in single-crystal and meltquenched highly dense Cu2−xSe bulks. Sci Rep, 2015, 5: 7671Google Scholar
  21. 21.
    Nunna R, Qiu P, Yin M, et al. Ultrahigh thermoelectric performance in Cu2Se-based hybrid materials with highly dispersed molecular CNTs. Energy Environ Sci, 2017, 10: 1928–1935Google Scholar
  22. 22.
    Olvera AA, Moroz NA, Sahoo P, et al. Partial indium solubility induces chemical stability and colossal thermoelectric figure of merit in Cu2Se. Energy Environ Sci, 2017, 10: 1668–1676Google Scholar
  23. 23.
    Zhao K, Blichfeld AB, Chen H, et al. Enhanced thermoelectric performance through tuning bonding energy in Cu2Se1–xSx liquidlike materials. Chem Mater, 2017, 29: 6367–6377Google Scholar
  24. 24.
    Zhao K, Qiu P, Song Q, et al. Ultrahigh thermoelectric performance in Cu2−ySe0.5S0.5 liquid-like materials. Mater Today Phys, 2017, 1: 14–23Google Scholar
  25. 25.
    Yang L, Chen ZG, Han G, et al. Te-Doped Cu2Se nanoplates with a high average thermoelectric figure of merit. J Mater Chem A, 2016, 4: 9213–9219Google Scholar
  26. 26.
    Butt S, Xu W, Farooq MU, et al. Enhanced thermoelectricity in high-temperature β-phase copperI selenides embedded with Cu2Te nanoclusters. ACS Appl Mater Interfaces, 2016, 8: 15196–15204Google Scholar
  27. 27.
    Gahtori B, Bathula S, Tyagi K, et al. Giant enhancement in thermoelectric performance of copper selenide by incorporation of different nanoscale dimensional defect features. Nano Energy, 2015, 13: 36–46Google Scholar
  28. 28.
    Liu ML, Chen IW, Huang FQ, et al. Improved thermoelectric properties of Cu-doped quaternary chalcogenides of Cu2CdSnSe4. Adv Mater, 2009, 21: 3808–3812Google Scholar
  29. 29.
    Shi XY, Huang FQ, Liu ML, et al. Thermoelectric properties of tetrahedrally bonded wide-gap stannite compounds Cu2ZnSn1−x InxSe4. Appl Phys Lett, 2009, 94: 122103Google Scholar
  30. 30.
    Liu R, Xi L, Liu H, et al. Ternary compound CuInTe2: a promising thermoelectric material with diamond-like structure. Chem Commun, 2012, 48: 3818Google Scholar
  31. 31.
    Plirdpring T, Kurosaki K, Kosuga A, et al. Chalcopyrite CuGaTe2: A high-efficiency bulk thermoelectric material. Adv Mater, 2012, 24: 3622–3626Google Scholar
  32. 32.
    Zhang J, Liu R, Cheng N, et al. High-performance pseudocubic thermoelectric materials from non-cubic chalcopyrite compounds. Adv Mater, 2014, 26: 3848–3853Google Scholar
  33. 33.
    Liu R, Chen H, Zhao K, et al. Entropy as a gene-like performance indicator promoting thermoelectric materials. Adv Mater, 2017, 29: 1702712Google Scholar
  34. 34.
    Luo Y, Yang J, Jiang Q, et al. Progressive regulation of electrical and thermal transport properties to high-performance CuInTe2 thermoelectric materials. Adv Energy Mater, 2016, 6: 1600007Google Scholar
  35. 35.
    Liu Y, García G, Ortega S, et al. Solution-based synthesis and processing of Sn- and Bi-doped Cu3SbSe4 nanocrystals, nanomaterials and ring-shaped thermoelectric generators. J Mater Chem A, 2016, 5: 2592–2602Google Scholar
  36. 36.
    Skoug EJ, Cain JD, Morelli DT. High thermoelectric figure of merit in the Cu3SbSe4-Cu3SbS4 solid solution. Appl Phys Lett, 2011, 98: 261911Google Scholar
  37. 37.
    Liu R, Qin Y, Cheng N, et al. Thermoelectric performance of Cu1−x−δAgxInTe2 diamond-like materials with a pseudocubic crystal structure. Inorg Chem Front, 2016, 3: 1167–1177Google Scholar
  38. 38.
    Li Y, Liu G, Cao T, et al. Enhanced thermoelectric properties of Cu2SnSe3 by Ag,In-Co-doping. Adv Funct Mater, 2016, 26: 6025–6032Google Scholar
  39. 39.
    Shi X, Xi L, Fan J, et al. Cu−Se bond network and thermoelectric compounds with complex diamondlike structure. Chem Mater, 2010, 22: 6029–6031Google Scholar
  40. 40.
    Li Y, Liu G, Li J, et al. High thermoelectric performance of Indoped Cu2SnSe3 prepared by fast combustion synthesis. New J Chem, 2016, 40: 5394–5400Google Scholar
  41. 41.
    Ma R, Liu G, Li J, et al. Effect of secondary phases on thermoelectric properties of Cu2SnSe3. Ceramics Int, 2017, 43: 7002–7010Google Scholar
  42. 42.
    Suekuni K, Kim FS, Nishiate H, et al. High-performance thermoelectric minerals: Colusites Cu26V2M6S32 M=Ge, Sn. Appl Phys Lett, 2014, 105: 132107Google Scholar
  43. 43.
    Kikuchi Y, Bouyrie Y, Ohta M, et al. Vanadium-free colusites Cu26A2Sn6S32 A = Nb, Ta for environmentally friendly thermoelectrics. J Mater Chem A, 2016, 4: 15207–15214Google Scholar
  44. 44.
    Bouyrie Y, Ohta M, Suekuni K, et al. Enhancement in the thermoelectric performance of colusites Cu26A2E6S32 A=Nb, Ta; E=Sn, Ge using E-site non-stoichiometry. J Mater Chem C, 2017, 5: 4174–4184Google Scholar
  45. 45.
    Lu X, Morelli DT, Xia Y, et al. High performance thermoelectricity in earth-abundant compounds based on natural mineral tetrahedrites. Adv Energy Mater, 2013, 3: 342–348Google Scholar
  46. 46.
    Heo J, Laurita G, Muir S, et al. Enhanced thermoelectric performance of synthetic tetrahedrites. Chem Mater, 2014, 26: 2047–2051Google Scholar
  47. 47.
    Lu X, Morelli DT, Wang Y, et al. Phase stability, crystal structure, and thermoelectric properties of Cu12Sb4S13–xSex solid solutions. Chem Mater, 2016, 28: 1781–1786Google Scholar
  48. 48.
    Lu X, Morelli DT, Xia Y, et al. Increasing the thermoelectric figure of merit of tetrahedrites by co-doping with nickel and zinc. Chem Mater, 2015, 27: 408–413Google Scholar
  49. 49.
    Prem Kumar DS, Chetty R, Femi OE, et al. Thermoelectric properties of Bi doped tetrahedrite. J Elec Mater, 2017, 46: 2616–2622Google Scholar
  50. 50.
    Zhao LD, Berardan D, Pei YL, et al. Bi1−xSrxCuSeO oxyselenides as promising thermoelectric materials. Appl Phys Lett, 2010, 97: 092118Google Scholar
  51. 51.
    Liu Y, Zhao LD, Liu Y, et al. Remarkable enhancement in thermoelectric performance of BiCuSeO by Cu deficiencies. J Am Chem Soc, 2011, 133: 20112–20115Google Scholar
  52. 52.
    Li F, Li JF, Zhao LD, et al. Polycrystalline BiCuSeO oxide as a potential thermoelectric material. Energy Environ Sci, 2012, 5: 7188–7195Google Scholar
  53. 53.
    Li J, Sui J, Pei Y, et al. A high thermoelectric figure of merit ZT>1 in Ba heavily doped BiCuSeO oxyselenides. Energy Environ Sci, 2012, 5: 8543–8547Google Scholar
  54. 54.
    Lan JL, Zhan B, Liu YC, et al. Doping for higher thermoelectric properties in p-type BiCuSeO oxyselenide. Appl Phys Lett, 2013, 102: 123905Google Scholar
  55. 55.
    Pei YL, He J, Li JF, et al. High thermoelectric performance of oxyselenides: intrinsically low thermal conductivity of Ca-doped BiCuSeO. NPG Asia Mater, 2013, 5: e47Google Scholar
  56. 56.
    Sui J, Li J, He J, et al. Texturation boosts the thermoelectric performance of BiCuSeO oxyselenides. Energy Environ Sci, 2013, 6: 2916–2920Google Scholar
  57. 57.
    Pei YL, Wu H, Wu D, et al. High thermoelectric performance realized in a BiCuSeO system by improving carrier mobility through 3D modulation doping. J Am Chem Soc, 2014, 136: 13902–13908Google Scholar
  58. 58.
    Li Z, Xiao C, Fan S, et al. Dual vacancies: an effective strategy realizing synergistic optimization of thermoelectric property in BiCuSeO. J Am Chem Soc, 2015, 137: 6587–6593Google Scholar
  59. 59.
    Liu Y, Zhao LD, Zhu Y, et al. Synergistically optimizing electrical and thermal transport properties of BiCuSeO via a dual-doping approach. Adv Energy Mater, 2016, 6: 1502423Google Scholar
  60. 60.
    Ren GK, Wang SY, Zhu YC, et al. Enhancing thermoelectric performance in hierarchically structured BiCuSeO by increasing bond covalency and weakening carrier–phonon coupling. Energy Environ Sci, 2017, 10: 1590–1599Google Scholar
  61. 61.
    Yang D, Su X, Yan Y, et al. Manipulating the combustion wave during self-propagating synthesis for high thermoelectric performance of layered oxychalcogenide Bi1–xPbxCuSeO. Chem Mater, 2016, 28: 4628–4640Google Scholar
  62. 62.
    Toberer ES, Baranowski LL, Dames C. Advances in thermal conductivity. Annu Rev Mater Res, 2012, 42: 179–209Google Scholar
  63. 63.
    Tritt T M. Thermal Conductivity: Theory, Properties and Applications. New York: Plenum, 2004Google Scholar
  64. 64.
    Kittel C. Introduction to Solid State Physics. New York: John Wiley & Sons Inc., 1996Google Scholar
  65. 65.
    Toberer ES, Zevalkink A, Snyder GJ. Phonon engineering through crystal chemistry. J Mater Chem, 2011, 21: 15843–15852Google Scholar
  66. 66.
    Wang X, Qiu P, Zhang T, et al. Compound defects and thermoelectric properties in ternary CuAgSe-based materials. J Mater Chem A, 2015, 3: 13662–13670Google Scholar
  67. 67.
    Qiu P, Zhang T, Qiu Y, et al. Sulfide bornite thermoelectric material: a natural mineral with ultralow thermal conductivity. Energy Environ Sci, 2014, 7: 4000–4006Google Scholar
  68. 68.
    Weldert KS, Zeier WG, Day TW, et al. Thermoelectric transport in Cu7PSe6 with high copper ionic mobility. J Am Chem Soc, 2014, 136: 12035–12040Google Scholar
  69. 69.
    Aydemir U, Pöhls JH, Zhu H, et al. YCuTe2: a member of a new class of thermoelectric materials with CuTe4-based layered structure. J Mater Chem A, 2016, 4: 2461–2472Google Scholar
  70. 70.
    Bhattacharya S, Basu R, Bhatt R, et al. CuCrSe2: a high performance phonon glass and electron crystal thermoelectric material. J Mater Chem A, 2013, 1: 11289–11294Google Scholar
  71. 71.
    Li W, Ibáñez M, Zamani RR, et al. Cu2HgSnSe4 nanoparticles: synthesis and thermoelectric properties. CrystEngComm, 2013, 15: 8966Google Scholar
  72. 72.
    Chetty R, Dadda J, de Boor J, et al. The effect of Cu addition on the thermoelectric properties of Cu2CdGeSe4. Intermetallics, 2015, 57: 156–162Google Scholar
  73. 73.
    Suzumura A, Watanabe M, Nagasako N, et al. Improvement in thermoelectric properties of Se-Free Cu3SbS4 compound. J Elec Mater, 2014, 43: 2356–2361Google Scholar
  74. 74.
    Li J, Tan Q, Li JF. Synthesis and property evaluation of CuFeS2−x as earth-abundant and environmentally-friendly thermoelectric materials. J Alloys Compd, 2013, 551: 143–149Google Scholar
  75. 75.
    Li W, Lin S, Zhang X, et al. Thermoelectric properties of Cu2SnSe4 with intrinsic vacancy. Chem Mater, 2016, 28: 6227–6232Google Scholar
  76. 76.
    Vining CB, Laskow W, Hanson JO, et al. Thermoelectric properties of pressure-sintered Si0.8Ge0.2 thermoelectric alloys. J Appl Phys, 1991, 69: 4333–4340Google Scholar
  77. 77.
    Caillat T, Borshchevsky A, Fleurial JP. Properties of single crystalline semiconducting CoSb3. J Appl Phys, 1996, 80: 4442–4449Google Scholar
  78. 78.
    Liu HL, He Y, Shi X, et al. Recent progress in “phonon-liquid” thermoelectric materials. Chin Sci Bull Chin Ver, 2013, 58: 2603–2608Google Scholar
  79. 79.
    Qiu W, Xi L, Wei P, et al. Part-crystalline part-liquid state and rattling-like thermal damping in materials with chemical-bond hierarchy. Proc Natl Acad Sci USA, 2014, 111: 15031–15035Google Scholar
  80. 80.
    Qiu W, Wu L, Ke X, et al. Diverse lattice dynamics in ternary Cu- Sb-Se compounds. Sci Rep, 2015, 5: 13643Google Scholar
  81. 81.
    Li B, Wang H, Kawakita Y, et al. Liquid-like thermal conduction in intercalated layered crystalline solids. Nat Mater, 2018, 17: 226–230Google Scholar
  82. 82.
    Voneshen DJ, Walker HC, Refson K, et al. Hopping time scales and the phonon-liquid electron-crystal picture in thermoelectric copper selenide. Phys Rev Lett, 2017, 118: 145901Google Scholar
  83. 83.
    Skoug EJ, Morelli DT. Role of lone-pair electrons in producing minimum thermal conductivity in nitrogen-group chalcogenide compounds. Phys Rev Lett, 2011, 107: 235901Google Scholar
  84. 84.
    Sun Y, Xi L, Yang J, et al. The “electron crystal” behavior in copper chalcogenides Cu2XX = Se, S. J Mater Chem A, 2017, 5: 5098–5105Google Scholar
  85. 85.
    Zou D, Xie S, Liu Y, et al. Electronic structures and thermoelectric properties of layered BiCuOCh oxychalcogenides Ch = S, Se and Te: first-principles calculations. J Mater Chem A, 2013, 1: 8888–8896Google Scholar
  86. 86.
    Do D, Ozolins V, Mahanti SD, et al. Physics of bandgap formation in Cu–Sb–Se based novel thermoelectrics: the role of Sb valency and Cu d levels. J Phys-Condens Matter, 2012, 24: 415502Google Scholar
  87. 87.
    Qin Y, Qiu P, Liu R, et al. Optimized thermoelectric properties in pseudocubic diamond-like CuGaTe2 compounds. J Mater Chem A, 2016, 4: 1277–1289Google Scholar
  88. 88.
    Song Q, Qiu P, Hao F, et al. Quaternary pseudocubic Cu2TMSnSe4 TM = Mn, Fe, Co chalcopyrite thermoelectric materials. Adv Electron Mater, 2016, 2: 1600312Google Scholar
  89. 89.
    Zeier WG, Zevalkink A, Gibbs ZM, et al. Thinking like a chemist: intuition in thermoelectric materials. Angew Chem Int Ed, 2016, 55: 6826–6841Google Scholar
  90. 90.
    Zhao K, Blichfeld AB, Eikeland E, et al. Extremely low thermal conductivity and high thermoelectric performance in liquid-like Cu2Se1−xSx polymorphic materials. J Mater Chem A, 2017, 5: 18148–18156Google Scholar
  91. 91.
    Zhao K, Zhu C, Qiu P, et al. High thermoelectric performance and low thermal conductivity in Cu2−yS1/3Se1/3Te1/3 liquid-like materials with nanoscale mosaic structures. Nano Energy, 2017, 42: 43–50Google Scholar
  92. 92.
    Xie Y. Mosaic crystals leading a new route to achieve ultrahigh thermoelectric performance. Sci China Mater, 2015, 58: 431–432Google Scholar
  93. 93.
    Ge ZH, Liu X, Feng D, et al. High-performance thermoelectricity in nanostructured earth-abundant copper sulfides bulk materials. Adv Energy Mater, 2016, 6: 1600607Google Scholar
  94. 94.
    Jiang B, Qiu P, Eikeland E, et al. Cu8GeSe6-based thermoelectric materials with an argyrodite structure. J Mater Chem C, 2017, 5: 943–952Google Scholar
  95. 95.
    Qiu PF, Wang XB, Zhang TS, et al. Thermoelectric properties of Te-doped ternary CuAgSe compounds. J Mater Chem A, 2015, 3: 22454–22461Google Scholar
  96. 96.
    Bhattacharya S, Bohra A, Basu R, et al. High thermoelectric performance of AgCrSe20.5CuCrSe20.5 nano-composites having all-scale natural hierarchical architectures. J Mater Chem A, 2014, 2: 17122–17129Google Scholar
  97. 97.
    Hwang JY, Mun HA, Kim SI, et al. Effects of doping on transport properties in Cu–Bi–Se-based thermoelectric materials. Inorg Chem, 2014, 53: 12732–12738Google Scholar
  98. 98.
    Ishiwata S, Shiomi Y, Lee JS, et al. Extremely high electron mobility in a phonon-glass semimetal. Nat Mater, 2013, 12: 512–517Google Scholar
  99. 99.
    Han CG, Zhang BP, Ge ZH, et al. Thermoelectric properties of ptype semiconductors copper chromium disulfide CuCrS2+x. J Mater Sci, 2013, 48: 4081–4087Google Scholar
  100. 100.
    Gągor A, Pietraszko A, Kaynts D. Diffusion paths formation for Cu+ ions in superionic Cu6PS5I single crystals studied in terms of structural phase transition. J Solid State Chem, 2005, 178: 3366–3375Google Scholar
  101. 101.
    Miyatani S, Suzuki Y. On the electric conductivity of cuprous sulfide: experiment. J Phys Soc Jpn, 1953, 8: 680–681Google Scholar
  102. 102.
    Ema Y. Cu electromigration effect on Cu2−xSe film properties. Jpn J Appl Phys, 1990, 29: 2098–2102Google Scholar
  103. 103.
    Bailey TP, Hui S, Xie H, et al. Enhanced ZT and attempts to chemically stabilize Cu2Se via Sn doping. J Mater Chem A, 2016, 4: 17225–17235Google Scholar
  104. 104.
    Qiu P, Agne MT, Liu Y, et al. Suppression of atom motion and metal deposition in mixed ionic/electronic conductors. Nat Commun, 2018, 9: 2910Google Scholar
  105. 105.
    Tang H, Sun FH, Dong JF, et al. Graphene network in copper sulfide leading to enhanced thermoelectric properties and thermal stability. Nano Energy, 2018, 49: 267–273Google Scholar
  106. 106.
    Li W, Ibáñez M, Cadavid D, et al. Colloidal synthesis and functional properties of quaternary Cu-based semiconductors: Cu2 HgGeSe4. J Nanopart Res, 2014, 16: 2297Google Scholar
  107. 107.
    Navrátil J, Kucek V, Plecháček T, et al. Thermoelectric properties of Cu2HgSnSe4-Cu2HgSnTe4 solid solution. J Elec Materi, 2014, 43: 3719–3725Google Scholar
  108. 108.
    Pavan Kumar V, Guilmeau E, Raveau B, et al. A new wide band gap thermoelectric quaternary selenide Cu2MgSnSe4. J Appl Phys, 2015, 118: 155101Google Scholar
  109. 109.
    Ibáñez M, Zamani R, LaLonde A, et al. Cu2ZnGeSe4 nanocrystals: synthesis and thermoelectric properties. J Am Chem Soc, 2012, 134: 4060–4063Google Scholar
  110. 110.
    Doverspike K, Dwight K, Wold A. Preparation and characterization of copper zinc germanium sulfide selenide Cu2ZnGeS4-y Sey. Chem Mater, 1990, 2: 194–197Google Scholar
  111. 111.
    Xie H, Su X, Zheng G, et al. The role of Zn in chalcopyrite CuFeS2: enhanced thermoelectric properties of Cu1−xZnxFeS2 with in situ nanoprecipitates. Adv Energy Mater, 2016, 7: 1601299Google Scholar
  112. 112.
    Li D, Li R, Qin XY,et al. Co-precipitation synthesis of Sn and/or S doped nanostructured Cu3Sb1−xSnxSe4−ySy with a high thermoelectric performance. CrystEngComm, 2013, 15: 7166–7170Google Scholar
  113. 113.
    Wei TR, Wang H, Gibbs ZM, et al. Thermoelectric properties of Sn-doped p-type Cu3SbSe4: a compound with large effective mass and small band gap. J Mater Chem A, 2014, 2: 13527–13533Google Scholar
  114. 114.
    Cheng N, Liu R, Bai S, et al. Enhanced thermoelectric performance in Cd doped CuInTe2 compounds. J Appl Phys, 2014, 115: 163705Google Scholar
  115. 115.
    Zhang J, Qin X, Li D, et al. Enhanced thermoelectric properties of Ag-doped compounds CuAgxGa1−xTe2 0≤x≤0.05. J Alloys Compd, 2014, 586: 285–288Google Scholar
  116. 116.
    Kucek V, Drasar C, Kasparova J, et al. High-temperature thermoelectric properties of Hg-doped CuInTe2. J Appl Phys, 2015, 118: 125105Google Scholar
  117. 117.
    Kucek V, Drasar C, Navratil J, et al. Thermoelectric properties of Ni-doped CuInTe2. J Phys Chem Solids, 2015, 83: 18–23Google Scholar
  118. 118.
    Shen J, Chen Z, Lin S, et al. Single parabolic band behavior of thermoelectric p-type CuGaTe2. J Mater Chem C, 2016, 4: 209–214Google Scholar
  119. 119.
    Li Y, Zhang T, Qin Y, et al. Thermoelectric transport properties of diamond-like Cu1−xFe1+xS2 tetrahedral compounds. J Appl Phys, 2014, 116: 203705Google Scholar
  120. 120.
    Li XY, Li D, Xin HX, et al. Effects of bismuth doping on the thermoelectric properties of Cu3SbSe4 at moderate temperatures. J Alloys Compd, 2013, 561: 105–108Google Scholar
  121. 121.
    Yang C, Huang F, Wu L, et al. New stannite-like p-type thermoelectric material Cu3SbSe4. J Phys D-Appl Phys, 2011, 44: 295404Google Scholar
  122. 122.
    Skoug EJ, Cain JD, Majsztrik P, et al. Doping effects on the thermoelectric properties of Cu3SbSe4. Sci Adv Mat, 2011, 3: 602–606Google Scholar
  123. 123.
    Chetty R, Bali A, Mallik RC. Thermoelectric properties of indium doped Cu2CdSnSe4. Intermetallics, 2016, 72: 17–24Google Scholar
  124. 124.
    Kosuga A, Higashine R, Plirdpring T, et al. Effects of the defects on the thermoelectric properties of Cu–In–Te chalcopyrite-related compounds. Jpn J Appl Phys, 2012, 51: 121803Google Scholar
  125. 125.
    Wei TR, Li F, Li JF. Enhanced thermoelectric performance of nonstoichiometric compounds Cu3−xSbSe4 by Cu deficiencies. J Elec Mater, 2014, 43: 2229–2238Google Scholar
  126. 126.
    Goto Y, Naito F, Sato R, et al. Enhanced thermoelectric figure of merit in Stannite–Kuramite solid solutions Cu2+xFe1–xSnS4–y x= 0–1 with anisotropy lowering. Inorg Chem, 2013, 52: 9861–9866Google Scholar
  127. 127.
    Zeier WG, Heinrich CP, Day T, et al. Bond strength dependent superionic phase transformation in the solid solution series Cu2ZnGeSe4−xSx. J Mater Chem A, 2014, 2: 1790–1794Google Scholar
  128. 128.
    Berman R. Thermal Conduction in Solids. Oxford: Clarendon Press, 1976Google Scholar
  129. 129.
    Li Y, Meng Q, Deng Y, et al. High thermoelectric performance of solid solutions CuGa1−xInxTe2 x = 0–1.0. Appl Phys Lett, 2012, 100: 231903Google Scholar
  130. 130.
    Skoug EJ, Cain JD, Morelli DT, et al. Lattice thermal conductivity of the Cu3SbSe4-Cu3SbS4 solid solution. J Appl Phys, 2011, 110: 023501Google Scholar
  131. 131.
    Zeier WG, Pei Y, Pomrehn G, et al. Phonon scattering through a local anisotropic structural disorder in the thermoelectric solid solution Cu2Zn1–xFexGeSe4. J Am Chem Soc, 2013, 135: 726–732Google Scholar
  132. 132.
    Liu FS, Wang B, Ao WQ, et al. Crystal structure and thermoelectric properties of Cu2Cd1−xZnxSnSe4 solid solutions. Intermetallics, 2014, 55: 15–21Google Scholar
  133. 133.
    Li Z, Xiao C, Zhu H, et al. Defect chemistry for thermoelectric materials. J Am Chem Soc, 2016, 138: 14810–14819Google Scholar
  134. 134.
    Chen H, Yang C, Liu H, et al. Thermoelectric properties of CuInTe2/graphene composites. CrystEngComm, 2013, 15: 6648–6651Google Scholar
  135. 135.
    Luo Y, Yang J, Jiang Q, et al. Large enhancement of thermoelectric performance of CuInTe2via a synergistic strategy of point defects and microstructure engineering. Nano Energy, 2015, 18: 37–46Google Scholar
  136. 136.
    Dong Y, Wang H, Nolas GS. Synthesis, crystal structure, and high temperature transport properties of p-type Cu2Zn1–xFexSnSe4. Inorg Chem, 2013, 52: 14364–14367Google Scholar
  137. 137.
    Dong Y, Wang H, Nolas GS. Synthesis and thermoelectric properties of Cu excess Cu2ZnSnSe4. Phys Status Solidi RRL, 2014, 8: 61–64Google Scholar
  138. 138.
    Cho JY, Shi X, Salvador JR, et al. Thermoelectric properties of ternary diamondlike semiconductors Cu2Ge1+xSe3. J Appl Phys, 2010, 108: 073713Google Scholar
  139. 139.
    Xi L, Zhang YB, Shi XY, et al. Chemical bonding, conductive network, and thermoelectric performance of the ternary semiconductors Cu2SnX3 X=Se, S from first principles. Phys Rev B, 2012, 86: 155201Google Scholar
  140. 140.
    Fan J, Carrillo-Cabrera W, Akselrud L, et al. New monoclinic phase at the composition Cu2SnSe3 and its thermoelectric properties. Inorg Chem, 2013, 52: 11067–11074Google Scholar
  141. 141.
    Fan J, Carrillo-Cabrera W, Antonyshyn I, et al. Crystal structure and physical properties of ternary phases around the composition Cu5Sn2Se7 with tetrahedral coordination of atoms. Chem Mater, 2014, 26: 5244–5251Google Scholar
  142. 142.
    Tan Q, Sun W, Li Z, et al. Enhanced thermoelectric properties of earth-abundant Cu2SnS3 via in doping effect. J Alloys Compd, 2016, 672: 558–563Google Scholar
  143. 143.
    Huang T, Yan Y, Peng K, et al. Enhanced thermoelectric performance in copper-deficient Cu2GeSe3. J Alloys Compd, 2017, 723: 708–713Google Scholar
  144. 144.
    Cho JY, Shi X, Salvador JR,et al. Thermoelectric properties and investigations of low thermal conductivity in Ga-doped Cu2GeSe3. Phys Rev B, 2011, 84: 085207Google Scholar
  145. 145.
    Shen Y, Li C, Huang R, et al. Eco-friendly p-type Cu2SnS3 thermoelectric material: crystal structure and transport properties. Sci Rep, 2016, 6: 32501Google Scholar
  146. 146.
    Adhikary A, Mohapatra S, Lee SH, et al. Metallic ternary telluride with sphalerite superstructure. Inorg Chem, 2016, 55: 2114–2122Google Scholar
  147. 147.
    Vaqueiro P, Guélou G, Kaltzoglou A, et al. The influence of mobile copper ions on the glass-like thermal conductivity of copper-rich tetrahedrites. Chem Mater, 2017, 29: 4080–4090Google Scholar
  148. 148.
    Sun FH, Wu CF, Li Z, et al. Powder metallurgically synthesized Cu12Sb4S13 tetrahedrites: phase transition and high thermoelectricity. RSC Adv, 2017, 7: 18909–18916Google Scholar
  149. 149.
    Barbier T, Lemoine P, Gascoin S, et al. Structural stability of the synthetic thermoelectric ternary and nickel-substituted tetrahedrite phases. J Alloys Compd, 2015, 634: 253–262Google Scholar
  150. 150.
    Lu X, Morelli D. The effect of Te substitution for Sb on thermoelectric properties of tetrahedrite. J Elec Materi, 2014, 43: 1983–1987Google Scholar
  151. 151.
    Kosaka Y, Suekuni K, Hashikuni K, et al. Effects of Ge and Sn substitution on the metal–semiconductor transition and thermoelectric properties of Cu12Sb4S13 tetrahedrite. Phys Chem Chem Phys, 2017, 19: 8874–8879Google Scholar
  152. 152.
    Bouyrie Y, Sassi S, Candolfi C, et al. Thermoelectric properties of double-substituted tetrahedrites Cu12−xCoxSb4−yTeyS13. Dalton Trans, 2016, 45: 7294–7302Google Scholar
  153. 153.
    Sun FH, Dong J, Dey S, et al. Enhanced thermoelectric performance of Cu12Sb4S13−δ tetrahedrite via nickel doping. Sci China Mater, 2018, 61: 1209–1217Google Scholar
  154. 154.
    Chetty R, Bali A, Mallik RC. Tetrahedrites as thermoelectric materials: an overview. J Mater Chem C, 2015, 3: 12364–12378Google Scholar
  155. 155.
    Kim FS, Suekuni K, Nishiate H, et al. Tuning the charge carrier density in the thermoelectric colusite. J Appl Phys, 2016, 119: 175105Google Scholar
  156. 156.
    Suekuni K, Tsuruta K, Kunii M, et al. High-performance thermoelectric mineral Cu12−xNixSb4S13 tetrahedrite. J Appl Phys, 2013, 113: 043712Google Scholar
  157. 157.
    Lin H, Chen H, Shen JN, et al. Chemical modification and energetically favorable atomic disorder of a layered thermoelectric material TmCuTe2 leading to high performance. Chem Eur J, 2014, 20: 15401–15408Google Scholar
  158. 158.
    Esmaeili M, Tseng YC, Mozharivskyj Y. Thermoelectric properties, crystal and electronic structure of semiconducting RECuSe2 RE=Pr, Sm, Gd, Dy and Er. J Alloys Compd, 2014, 610: 555–560Google Scholar
  159. 159.
    Yang G, Yao Y, Ma D. Structural, electronic, and thermoelectric properties of La2CuBiS5. Sci China Mater, 2017, 60: 151–158Google Scholar
  160. 160.
    Gulay LD, Daszkiewicz M, Shemet VY. Crystal structure of ~RCu3S3 and ∼RCuTe2 R=Gd–Lu compounds. J Solid State Chem, 2012, 186: 142–148Google Scholar
  161. 161.
    Oudah M, Kleinke KM, Kleinke H. Thermoelectric properties of the quaternary chalcogenides BaCu5.9STe6 and BaCu5.9SeTe6. Inorg Chem, 2014, 54: 845–849Google Scholar
  162. 162.
    Kurosaki K, Uneda H, Muta H, et al. Thermoelectric properties of potassium-doped β-BaCu2S2 with natural superlattice structure. J Appl Phys, 2005, 97: 053705Google Scholar
  163. 163.
    Li J, Zhao LD, Sui J, et al. BaCu2Se2 based compounds as promising thermoelectric materials. Dalton Trans, 2015, 44: 2285–2293Google Scholar
  164. 164.
    Zhao LD, He J, Berardan D, et al. BiCuSeO oxyselenides: new promising thermoelectric materials. Energy Environ Sci, 2014, 7: 2900–2924Google Scholar
  165. 165.
    Lan JL, Liu YC, Zhan B, et al. Enhanced thermoelectric properties of Pb-doped BiCuSeO ceramics. Adv Mater, 2013, 25: 5086–5090Google Scholar
  166. 166.
    Li F, Wei TR, Kang F, et al. Enhanced thermoelectric performance of Ca-doped BiCuSeO in a wide temperature range. J Mater Chem A, 2013, 1: 11942–11949Google Scholar
  167. 167.
    Liu Y, Lan J, Xu W, et al. Enhanced thermoelectric performance of a BiCuSeO system via band gap tuning. Chem Commun, 2013, 49: 8075–8077Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Tian-Ran Wei (魏天然)
    • 1
  • Yuting Qin (覃玉婷)
    • 1
    • 2
  • Tingting Deng (邓婷婷)
    • 1
    • 2
  • Qingfeng Song (宋庆峰)
    • 1
    • 2
  • Binbin Jiang (江彬彬)
    • 1
    • 2
  • Ruiheng Liu (刘睿恒)
    • 1
  • Pengfei Qiu (仇鹏飞)
    • 1
  • Xun Shi (史迅)
    • 1
    Email author
  • Lidong Chen (陈立东)
    • 1
  1. 1.State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations