Advertisement

Sulfur/nickel ferrite composite as cathode with high-volumetric-capacity for lithium-sulfur battery

  • Ze Zhang (张泽)
  • Di-Hua Wu (吴迪华)
  • Zhen Zhou (周震)
  • Guo-Ran Li (李国然)
  • Sheng Liu (刘胜)
  • Xue-Ping Gao (高学平)
Articles

Abstract

Low volumetric energy density is a bottleneck for the application of lithium-sulfur (Li-S) battery. The low-density sulfur cooperated with the light-weight carbon substrate realizes electrochemical cycle stability, but leads to worse volumetric energy density. Here, nickel ferrite (NiFe2O4)nanofibers as novel substrate for sulfur not only anchor lithium polysulfides to enhance the cycle stability of sulfur cathode, but also contribute to the high volumetric capacity of the S/nickel ferrite composite. Specifically, the S/nickel ferrite composite presents an initial volumetric capacity of 1,281.7 mA h cm−3-composite at 0.1 C rate, 1.9 times higher than that of S/carbon nanotubes, due to the high tap density of the S/nickel ferrite composite.

Keywords

lithium-sulfur battery sulfur cathode nickel ferrite nanofibers tap density volumetric capacity 

锂-硫电池用高体积比容量硫/铁酸镍复合正极材料

摘要

锂-硫电池因其较高的理论质量能量密度而广为人知. 然而, 与以重质过渡金属氧化物作为正极材料的传统锂离子电池相比, 锂-硫较低的体积能量密度是其实际应用的瓶颈. 此外, 硫单质通常与轻质导电碳基底材料复合, 以实现其电化学循环稳定性. 这使得锂-硫电池实际体积能量密度更低. 本文通过静电纺丝方法制备了铁酸镍纳米纤维, 并将其用作新型载体材料. 铁酸镍不仅可以化学固定多硫化锂, 提高硫电极的循环稳定性, 而且有利于硫/铁酸镍的高体积比容量. 测试结果显示, 相比于硫/碳纳米管复合材料, 硫/铁酸镍复合材料具有更高的振实密度; 在0.1 C倍率充放电时, 以复合材料为活性物质计算, 该复合材料的初始体积比容量为1281.7 mA h cm−3, 是硫/碳纳米管复合材料容量的1.9倍. 本工作提出以高振实密度的金属铁氧体材料来实现硫正极的高稳定性和高体积比容量, 这一新策略有助于实现锂-硫电池的高体积能量密度.

Notes

Acknowledgements

This work is financially supported by the New Energy Project for Electric Vehicles in National Key Research and Development Program (2016YFB0100200) and the National Natural Science Foundation of China (21573114 and 51502145)

References

  1. 1.
    Bruce PG, Freunberger SA, Hardwick LJ, et al. Li–O2 and Li–S batteries with high energy storage. Nat Mater, 2012, 11: 19–29CrossRefGoogle Scholar
  2. 2.
    Gao XP, Yang HX. Multi-electron reaction materials for high energy density batteries. Energy Environ Sci, 2010, 3: 174–189CrossRefGoogle Scholar
  3. 3.
    Gao J, Abruña HD. Key parameters governing the energy density of rechargeable Li/S batteries. J Phys Chem Lett, 2014, 5: 882–885CrossRefGoogle Scholar
  4. 4.
    Pang Q, Liang X, Kwok CY, et al. Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nat Energy, 2016, 1: 16132CrossRefGoogle Scholar
  5. 5.
    Manthiram A, Fu Y, Chung SH, et al. Rechargeable lithium–sulfur batteries. Chem Rev, 2014, 114: 11751–11787CrossRefGoogle Scholar
  6. 6.
    Fang X, Peng H. A revolution in electrodes: recent progress in rechargeable lithium-sulfur batteries. Small, 2015, 11: 1488–1511CrossRefGoogle Scholar
  7. 7.
    Lai C, Gao XP, Zhang B, et al. Synthesis and electrochemical performance of sulfur/highly porous carbon composites. J Phys Chem C, 2009, 113: 4712–4716CrossRefGoogle Scholar
  8. 8.
    Xu T, Song J, Gordin ML, et al. Mesoporous carbon–carbon nanotube–sulfur composite microspheres for high-areal-capacity lithium–sulfur battery cathodes. ACS Appl Mater Interfaces, 2013, 5: 11355–11362CrossRefGoogle Scholar
  9. 9.
    Cheng XB, Huang JQ, Zhang Q, et al. Aligned carbon nanotube/sulfur composite cathodes with high sulfur content for lithium–sulfur batteries. Nano Energy, 2014, 4: 65–72CrossRefGoogle Scholar
  10. 10.
    Zhang Z, Jing HK, Liu S, et al. Encapsulating sulfur into a hybrid porous carbon/CNT substrate as a cathode for lithium–sulfur batteries. J Mater Chem A, 2015, 3: 6827–6834CrossRefGoogle Scholar
  11. 11.
    Babu G, Reddy Arava LM. Graphene-decorated graphite–sulfur composite as a high-tap-density electrode for Li–S batteries. RSC Adv, 2015, 5: 47621–47627CrossRefGoogle Scholar
  12. 12.
    Zhang Y, Li K, Huang J, et al. Preparation of monodispersed sulfur nanoparticles-partly reduced graphene oxide-polydopamine composite for superior performance lithium-sulfur battery. Carbon, 2017, 114: 8–14CrossRefGoogle Scholar
  13. 13.
    Zhang Y, Li K, Li H, et al. High sulfur loading lithium–sulfur batteries based on a upper current collector electrode with lithiumion conductive polymers. J Mater Chem A, 2017, 5: 97–101CrossRefGoogle Scholar
  14. 14.
    Ji X, Lee KT, Nazar LF. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat Mater, 2009, 8: 500–506CrossRefGoogle Scholar
  15. 15.
    Zhang B, Qin X, Li GR, et al. Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy Environ Sci, 2010, 3: 1531–1537CrossRefGoogle Scholar
  16. 16.
    Li GC, Hu JJ, Li GR, et al. Sulfur/activated-conductive carbon black composites as cathode materials for lithium/sulfur battery. J Power Sources, 2013, 240: 598–605CrossRefGoogle Scholar
  17. 17.
    Li Z, Yuan L, Yi Z, et al. Insight into the electrode mechanism in lithium-sulfur batteries with ordered microporous carbon confined sulfur as the cathode. Adv Energy Mater, 2014, 4: 1301473CrossRefGoogle Scholar
  18. 18.
    Li GC, Li GR, Ye SH, et al. A polyaniline-coated sulfur/carbon composite with an enhanced high-rate capability as a cathode material for lithium/sulfur batteries. Adv Energy Mater, 2012, 2: 1238–1245CrossRefGoogle Scholar
  19. 19.
    Xie J, Yang J, Zhou X, et al. Preparation of three-dimensional hybrid nanostructure-encapsulated sulfur cathode for high-rate lithium sulfur batteries. J Power Sources, 2014, 253: 55–63CrossRefGoogle Scholar
  20. 20.
    Li G, Sun J, Hou W, et al. Three-dimensional porous carbon composites containing high sulfur nanoparticle content for highperformance lithium–sulfur batteries. Nat Commun, 2016, 7: 10601CrossRefGoogle Scholar
  21. 21.
    Zhang Z, Kong LL, Liu S, et al. A high-efficiency sulfur/carbon composite based on 3D graphene nanosheet@carbon nanotube matrix as cathode for lithium-sulfur battery. Adv Energy Mater, 2017, 7: 1602543CrossRefGoogle Scholar
  22. 22.
    Yang CP, Yin YX, Ye H, et al. Insight into the effect of boron doping on sulfur/carbon cathode in lithium–sulfur batteries. ACS Appl Mater Interfaces, 2014, 6: 8789–8795CrossRefGoogle Scholar
  23. 23.
    Qiu Y, Li W, Zhao W, et al. High-rate, ultralong cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene. Nano Lett, 2014, 14: 4821–4827CrossRefGoogle Scholar
  24. 24.
    Zhou W, Wang C, Zhang Q, et al. Tailoring pore size of nitrogen-doped hollow carbon nanospheres for confining sulfur in lithiumsulfur batteries. Adv Energy Mater, 2015, 5: 1401752CrossRefGoogle Scholar
  25. 25.
    Zhou G, Paek E, Hwang GS, et al. Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight threedimensional nitrogen/sulphur-codoped graphene sponge. Nat Commun, 2015, 6: 7760–7770CrossRefGoogle Scholar
  26. 26.
    Wang L, Dong Z, Wang D, et al. Covalent bond glued sulfur nanosheet-based cathode integration for long-cycle-life Li–S batteries. Nano Lett, 2013, 13: 6244–6250CrossRefGoogle Scholar
  27. 27.
    Zu C, Manthiram A. Hydroxylated graphene-sulfur nanocomposites for high-rate lithium-sulfur batteries. Adv Energy Mater, 2013, 3: 1008–1012CrossRefGoogle Scholar
  28. 28.
    Wang Z, Dong Y, Li H, et al. Enhancing lithium–sulphur battery performance by strongly binding the discharge products on aminofunctionalized reduced graphene oxide. Nat Commun, 2014, 5: 5002–5009CrossRefGoogle Scholar
  29. 29.
    Wei Seh Z, Li W, Cha JJ, et al. Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nat Commun, 2013, 4: 1331–1336CrossRefGoogle Scholar
  30. 30.
    Pang Q, Kundu D, Cuisinier M, et al. Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nat Commun, 2014, 5: 4759–4766CrossRefGoogle Scholar
  31. 31.
    Liang X, Kwok CY, Lodi-Marzano F, et al. Tuning transition metal oxide-sulfur interactions for long life lithium sulfur batteries: the “goldilocks” principle. Adv Energy Mater, 2016, 6: 1501636CrossRefGoogle Scholar
  32. 32.
    Tao X, Wang J, Liu C, et al. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium–sulfur battery design. Nat Commun, 2016, 7: 11203–11211CrossRefGoogle Scholar
  33. 33.
    Fan Q, Liu W, Weng Z, et al. Ternary hybrid material for highperformance lithium–sulfur battery. J Am Chem Soc, 2015, 137: 12946–12953CrossRefGoogle Scholar
  34. 34.
    Yuan Z, Peng HJ, Hou TZ, et al. Powering lithium–sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett, 2016, 16: 519–527CrossRefGoogle Scholar
  35. 35.
    Li X, Liang J, Lu Y, et al. Bi2S3 in-situ formed in molten S environment stabilized sulfur cathodes for high-performance lithium-sulfur batteries. J Power Sources, 2016, 329: 379–386CrossRefGoogle Scholar
  36. 36.
    Lei T, Chen W, Huang J, et al. Multi-functional layered WS2 nanosheets for enhancing the performance of lithium-sulfur batteries. Adv Energy Mater, 2017, 7: 1601843CrossRefGoogle Scholar
  37. 37.
    Babu G, Masurkar N, Al Salem H, et al. Transition metal dichalcogenide atomic layers for lithium polysulfides electrocatalysis. J Am Chem Soc, 2017, 139: 171–178CrossRefGoogle Scholar
  38. 38.
    Cui Z, Zu C, Zhou W, et al. Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries. Adv Mater, 2016, 28: 6926–6931CrossRefGoogle Scholar
  39. 39.
    Deng DR, An TH, Li YJ, et al. Hollow porous titanium nitride tubes as a cathode electrode for extremely stable Li–S batteries. J Mater Chem A, 2016, 4: 16184–16190CrossRefGoogle Scholar
  40. 40.
    Hao Z, Yuan L, Chen C, et al. TiN as a simple and efficient polysulfide immobilizer for lithium–sulfur batteries. J Mater Chem A, 2016, 4: 17711–17717CrossRefGoogle Scholar
  41. 41.
    Sun Z, Zhang J, Yin L, et al. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat Commun, 2017, 8: 14627CrossRefGoogle Scholar
  42. 42.
    Zhao X, Liu M, Chen Y, et al. Fabrication of layered Ti3C2 with an accordion-like structure as a potential cathode material for high performance lithium–sulfur batteries. J Mater Chem A, 2015, 3: 7870–7876CrossRefGoogle Scholar
  43. 43.
    Bao W, Su D, Zhang W, et al. 3D metal carbide@mesoporous carbon hybrid architecture as a new polysulfide reservoir for lithium-sulfur batteries. Adv Funct Mater, 2016, 26: 8746–8756CrossRefGoogle Scholar
  44. 44.
    Liang X, Rangom Y, Kwok CY, et al. Interwoven MXene nanosheet/carbon-nanotube composites as Li-S cathode hosts. Adv Mater, 2017, 29: 1603040CrossRefGoogle Scholar
  45. 45.
    Peng HJ, Zhang G, Chen X, et al. Enhanced electrochemical kinetics on conductive polar mediators for lithium-sulfur batteries. Angew Chem, 2016, 128: 13184–13189CrossRefGoogle Scholar
  46. 46.
    Liang X, Hart C, Pang Q, et al. A highly efficient polysulfide mediator for lithium–sulfur batteries. Nat Commun, 2015, 6: 5682–5689CrossRefGoogle Scholar
  47. 47.
    Blöchl PE. Projector augmented-wave method. Phys Rev B, 1994, 50: 17953–17979CrossRefGoogle Scholar
  48. 48.
    Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B, 1999, 59: 1758–1775CrossRefGoogle Scholar
  49. 49.
    Perdew JP, Chevary JA, Vosko SH, et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys Rev B, 1992, 46: 6671–6687CrossRefGoogle Scholar
  50. 50.
    Chinnasamy CN, Narayanasamy A, Ponpandian N, et al. Mixed spinel structure in nanocrystalline NiFe2O4. Phys Rev B, 2001, 63: 184108–184113CrossRefGoogle Scholar
  51. 51.
    Carta D, Casula MF, Falqui A, et al. A structural and magnetic investigation of the inversion degree in ferrite nanocrystals MFe2O4 (M=Mn, Co, Ni). J Phys Chem C, 2009, 113: 8606–8615CrossRefGoogle Scholar
  52. 52.
    Rios E, Gautier JL, Poillerat G, et al. Mixed valency spinel oxides of transition metals and electrocatalysis: case of the MnxCo3-xO4 system. Electrochim Acta, 1998, 44: 1491–1497CrossRefGoogle Scholar
  53. 53.
    Ponpandian N, Balaya P, Narayanasamy A. Electrical conductivity and dielectric behaviour of nanocrystalline NiFe2O4 spinel. J Phys-Condens Matter, 2002, 14: 3221–3237CrossRefGoogle Scholar
  54. 54.
    Zhao X, Fu Y, Wang J, et al. Ni-doped CoFe2O4 hollow nanospheres as efficient bi-functional catalysts. Electrochim Acta, 2016, 201: 172–178CrossRefGoogle Scholar
  55. 55.
    Zhang YZ, Zhang Z, Liu S, et al. Free-standing porous carbon nanofiber/carbon nanotube film as sulfur immobilizer with high areal capacity for lithium–sulfur battery. ACS Appl Mater Interfaces, 2018, 10: 8749–8757CrossRefGoogle Scholar
  56. 56.
    Cao Y, Li X, Zheng M, et al. Ultra-high rates and reversible capacity of Li-S battery with a nitrogen-doping conductive lewis base matrix. Electrochim Acta, 2016, 192: 467–474CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ze Zhang (张泽)
    • 1
  • Di-Hua Wu (吴迪华)
    • 1
  • Zhen Zhou (周震)
    • 1
  • Guo-Ran Li (李国然)
    • 1
  • Sheng Liu (刘胜)
    • 1
  • Xue-Ping Gao (高学平)
    • 1
  1. 1.Institute of New Energy Material Chemistry, School of Materials Science and EngineeringNankai UniversityTianjinChina

Personalised recommendations