Skip to main content

Unconventional solution-phase epitaxial growth of organic-inorganic hybrid perovskite nanocrystals on metal sulfide nanosheets

非传统溶液外延法在金属硫化物纳米片表面生长有机无机杂化钙钛矿纳米晶

Abstract

Epitaxial heterostructures based on organic-inorganic hybrid perovskites and two-dimensional materials hold great promises in optoelectronics, but they have been prepared only via solid-state methods that restricted their practical applications. Herein, we report cubic-phased MAPbBr3 (MA=CH3NH3+) nanocrystals were epitaxially deposited on trigonal/hexagonal-phased MoS2 nanosheets in solution by facilely tuning the solvation conditions. In spite of the mismatched lattice symmetry between the square MAPbBr3 (001) overlayer and the hexagonal MoS2 (001) substrate, two different aligning directions with lattice mismatch of as small as 1% were observed based on the domainmatching epitaxy. This was realized most likely due to the flexible nature and absence of surface dangling bonds of MoS2 nanosheets. The formation of the epitaxial interface affords an effective energy transfer from MAPbBr3 to MoS2, and as a result, paper-based photodetectors facilely fabricated from these solution-dispersible heterostructures showed better performance compared to those based on MoS2 or MAPbBr3 alone. In addition to the improved energy transfer and light adsorption, the use of MoS2 nanosheets provided flexible and continuous substrates to connect the otherwise discrete MAPbBr3 nanocrystals and achieved the better film forming ability. Our work suggests that the scalable preparation of heterostructures based on organic-inorganic hybrid perovskites and 2D materials via solution-phase epitaxy may bring about more opportunities for expanding their optoelectronic applications.

摘要

基于外延异质结构的有机-无机杂化钙钛矿/二维纳米片复合材料在光电领域具有很好的应用前景, 但目前使用的固相制备方法大大限制了这一目标的实现. 我们通过精细调节溶剂环境, 成功利用外延沉积的方式实现了在三角/六方相MoS2纳米片表面生长立方相MAPbBr3(MA=CH3NH3+)钙钛矿纳米晶. 虽然MAPbBr3与MoS2存在较大的晶格不匹配度, 但是由于MoS2纳米片性质柔软且表面缺失悬挂键, 可以在两条不同方向上观察到较高容忍度(∼1%错位)的外延生长关系. 这种外延界面的形成有利于MAPbBr3与MoS2之间有效的能量转移, 因此基于MAPbBr3/MoS2异质结的纸质器件与MAPbBr3或MoS2器件相比具有更优异的光电性能. 此外, 除了提高光吸收能力和能量传递, MoS2纳米片的存在还为离散的MAPbBr3纳米晶提供柔性和连续的基底, 从而改善了MAPbBr3纳米晶粒的成膜能力. 这种液相外延法可用于高性能的有机无机杂化钙钛矿与二维材料的异质结构材料的大规模制备, 将推动异质结构材料在光电领域的广泛使用.

References

  1. 1

    Chhowalla M, Shin HS, Eda G, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem, 2013, 5: 263–275

    Article  Google Scholar 

  2. 2

    Huang X, Zeng Z, Zhang H. Metal dichalcogenide nanosheets: preparation, properties and applications. Chem Soc Rev, 2013, 42: 1934–1946

    Article  Google Scholar 

  3. 3

    Geim AK, Novoselov KS. The rise of graphene. Nat Mater, 2007, 6: 183–191

    Article  Google Scholar 

  4. 4

    Karunadasa HI, Montalvo E, Sun Y, et al. A molecular MoS2 edge site mimic for catalytic hydrogen generation. Science, 2012, 335: 698–702

    Article  Google Scholar 

  5. 5

    Yu WJ, Li Z, Zhou H, et al. Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nat Mater, 2013, 12: 246–252

    Article  Google Scholar 

  6. 6

    Yu WJ, Liu Y, Zhou H, et al. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat Nanotechnol, 2013, 8: 952–958

    Article  Google Scholar 

  7. 7

    Amani M, Lien DH, Kiriya D, et al. Near-unity photoluminescence quantum yield in MoS2. Science, 2015, 350: 1065–1068

    Article  Google Scholar 

  8. 8

    Eda G, Maier SA. Two-dimensional crystals: managing light for optoelectronics. ACS Nano, 2013, 7: 5660–5665

    Article  Google Scholar 

  9. 9

    Zhang W, Chuu CP, Huang JK, et al. Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures. Sci Rep, 2014, 4: 3826

    Article  Google Scholar 

  10. 10

    Tan H, Xu W, Sheng Y, et al. Lateral graphene-contacted vertically stacked WS2/MoS2 hybrid photodetectors with large gain. Adv Mater, 2017, 29: 1702917

    Article  Google Scholar 

  11. 11

    Lin J, Li H, Zhang H, et al. Plasmonic enhancement of photocurrent in MoS2 field-effect-transistor. Appl Phys Lett, 2013, 102: 203109

    Article  Google Scholar 

  12. 12

    Yu SH, Lee Y, Jang SK, et al. Dye-sensitized MoS2 photodetector with enhanced spectral photoresponse. ACS Nano, 2014, 8: 8285–8291

    Article  Google Scholar 

  13. 13

    Esmaeili-Rad MR, Salahuddin S. High performance molybdenum disulfide amorphous silicon heterojunction photodetector. Sci Rep, 2013, 3: 2345

    Article  Google Scholar 

  14. 14

    Jariwala D, Sangwan VK, Wu CC, et al. Gate-tunable carbon nanotube-MoS2 heterojunction p-n diode. Proc Natl Acad Sci USA, 2013, 110: 18076–18080

    Article  Google Scholar 

  15. 15

    Noel NK, Stranks SD, Abate A, et al. Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ Sci, 2014, 7: 3061–3068

    Article  Google Scholar 

  16. 16

    Jeon T, Kim SJ, Yoon J, et al. Hybrid perovskites: effective crystal growth for optoelectronic applications. Adv Energy Mater, 2017, 7: 1602596

    Article  Google Scholar 

  17. 17

    Sum TC, Mathews N. Advancements in perovskite solar cells: photophysics behind the photovoltaics. Energy Environ Sci, 2014, 7: 2518–2534

    Article  Google Scholar 

  18. 18

    Yang WS, Noh JH, Jeon NJ, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348: 1234–1237

    Article  Google Scholar 

  19. 19

    Chiang CH, Nazeeruddin MK, Grätzel M, et al. The synergistic effect of H2O and DMF towards stable and 20% efficiency inverted perovskite solar cells. Energy Environ Sci, 2017, 10: 808–817

    Article  Google Scholar 

  20. 20

    Saliba M, Matsui T, Domanski K, et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science, 2016, 354: 206–209

    Article  Google Scholar 

  21. 21

    Xing G, Mathews N, Sun S, et al. Long-range balanced electronand hole-transport lengths in organic-inorganic CH3NH3PbI3. Science, 2013, 342: 344–347

    Article  Google Scholar 

  22. 22

    Stranks SD, Eperon GE, Grancini G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342: 341–344

    Article  Google Scholar 

  23. 23

    Green MA, Ho-Baillie A, Snaith HJ. The emergence of perovskite solar cells. Nat Photonics, 2014, 8: 506–514

    Article  Google Scholar 

  24. 24

    Schmidt LC, Pertegás A, González-Carrero S, et al. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. J Am Chem Soc, 2014, 136: 850–853

    Article  Google Scholar 

  25. 25

    Pathak S, Sakai N, Wisnivesky Rocca Rivarola F, et al. Perovskite crystals for tunable white light emission. Chem Mater, 2015, 27: 8066–8075

    Article  Google Scholar 

  26. 26

    Gonzalez-Carrero S, Galian RE, Pérez-Prieto J. Maximizing the emissive properties of CH3NH3PbBr3 perovskite nanoparticles. J Mater Chem A, 2015, 3: 9187–9193

    Article  Google Scholar 

  27. 27

    Huang H, Zhao F, Liu L, et al. Emulsion synthesis of size-tunable CH3NH3PbBr3 quantum dots: an alternative route toward efficient light-emitting diodes. ACS Appl Mater Interfaces, 2015, 7: 28128–28133

    Article  Google Scholar 

  28. 28

    Zhu F, Men L, Guo Y, et al. Shape evolution and single particle luminescence of organometal halide perovskite nanocrystals. ACS Nano, 2015, 9: 2948–2959

    Article  Google Scholar 

  29. 29

    Jang DM, Kim DH, Park K, et al. Ultrasound synthesis of lead halide perovskite nanocrystals. J Mater Chem C, 2016, 4: 10625–10629

    Article  Google Scholar 

  30. 30

    Xing J, Yan F, Zhao Y, et al. High-efficiency light-emitting diodes of organometal halide perovskite amorphous nanoparticles. ACS Nano, 2016, 10: 6623–6630

    Article  Google Scholar 

  31. 31

    Im JH, Lee CR, Lee JW, et al. 6.5% Efficient perovskite quantumdot-sensitized solar cell. Nanoscale, 2011, 3: 4088–4093

    Article  Google Scholar 

  32. 32

    Niu L, Liu X, Cong C, et al. Controlled synthesis of organic/inorganic van der Waals solid for tunable light-matter interactions. Adv Mater, 2015, 27: 7800–7808

    Article  Google Scholar 

  33. 33

    Cheng HC, Wang G, Li D, et al. van der Waals heterojunction devices based on organohalide perovskites and two-dimensional materials. Nano Lett, 2015, 16: 367–373

    Article  Google Scholar 

  34. 34

    Lu J, Carvalho A, Liu H, et al. Hybrid bilayer WSe2-CH3NH3PbI3 organolead halide perovskite as a high-performance photodetector. Angew Chem Int Ed, 2016, 55: 11945–11949

    Article  Google Scholar 

  35. 35

    Ma C, Shi Y, Hu W, et al. Heterostructured WS2/CH3NH3PbI3 photoconductors with suppressed dark current and enhanced photodetectivity. Adv Mater, 2016, 28: 3683–3689

    Article  Google Scholar 

  36. 36

    Kang DH, Pae SR, Shim J, et al. An ultrahigh-performance photodetector based on a perovskite-transition-metal-dichalcogenide hybrid structure. Adv Mater, 2016, 28: 7799–7806

    Article  Google Scholar 

  37. 37

    Wang Y, Fullon R, Acerce M, et al. Solution-processed MoS2/organolead trihalide perovskite photodetectors. Adv Mater, 2017, 29: 1603995

    Article  Google Scholar 

  38. 38

    Zhang F, Zhong H, Chen C, et al. Brightly luminescent and colortunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for display technology. ACS Nano, 2015, 9: 4533–4542

    Article  Google Scholar 

  39. 39

    Zhang F, Huang S, Wang P, et al. Colloidal synthesis of air-stable CH3NH3PbI3 quantum dots by gaining chemical insight into the solvent effects. Chem Mater, 2017, 29: 3793–3799

    Article  Google Scholar 

  40. 40

    Zeng Z, Yin Z, Huang X, et al. Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew Chem Int Ed, 2011, 50: 11093–11097

    Article  Google Scholar 

  41. 41

    Li H, Wu J, Yin Z, et al. Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc Chem Res, 2014, 47: 1067–1075

    Article  Google Scholar 

  42. 42

    Heising J, Kanatzidis MG. Exfoliated and restacked MoS2 and WS2: ionic or neutral species? Encapsulation and ordering of hard Electropositive cations. J Am Chem Soc, 1999, 121: 11720–11732

    Article  Google Scholar 

  43. 43

    Peng W, Wang L, Murali B, et al. Solution-grown monocrystalline hybrid perovskite films for hole-transporter-free solar cells. Adv Mater, 2016, 28: 3383–3390

    Article  Google Scholar 

  44. 44

    Brunetti B, Cavallo C, Ciccioli A, et al. On the thermal and thermodynamic (in)stability of methylammonium lead halide perovskites. Sci Rep, 2016, 6: 31896

    Article  Google Scholar 

  45. 45

    Kappera R, Voiry D, Yalcin SE, et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat Mater, 2014, 13: 1128–1134

    Article  Google Scholar 

  46. 46

    Eda G, Yamaguchi H, Voiry D, et al. Photoluminescence from chemically exfoliated MoS2. Nano Lett, 2011, 11: 5111–5116

    Article  Google Scholar 

  47. 47

    Voiry D, Salehi M, Silva R, et al. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett, 2013, 13: 6222–6227

    Article  Google Scholar 

  48. 48

    Narayan J, Larson BC. Domain epitaxy: A unified paradigm for thin film growth. J Appl Phys, 2003, 93: 278–285

    Article  Google Scholar 

  49. 49

    Huang X, Zeng Z, Bao S, et al. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat Commun, 2013, 4: 1444

    Article  Google Scholar 

  50. 50

    Lin Z, Yin A, Mao J, et al. Scalable solution-phase epitaxial growth of symmetry-mismatched heterostructures on two-dimensional crystal soft template. Sci Adv, 2016, 2: e1600993

    Article  Google Scholar 

  51. 51

    Jin M, Zhang H, Wang J, et al. Copper can still be epitaxially deposited on palladium nanocrystals to generate core–shell nanocubes despite their large lattice mismatch. ACS Nano, 2012, 6: 2566–2573

    Article  Google Scholar 

  52. 52

    Fan FR, Liu DY, Wu YF, et al. Epitaxial growth of heterogeneous metal nanocrystals: from gold nano-octahedra to palladium and silver nanocubes. J Am Chem Soc, 2008, 130: 6949–6951

    Article  Google Scholar 

  53. 53

    Geim AK, Grigorieva IV. van der Waals heterostructures. Nature, 2013, 499: 419–425

    Article  Google Scholar 

  54. 54

    Schulz P, Edri E, Kirmayer S, et al. Interface energetics in organometal halide perovskite-based photovoltaic cells. Energy Environ Sci, 2014, 7: 1377–1381

    Article  Google Scholar 

  55. 55

    Yang D, Yang R, Zhang J, et al. High efficiency flexible perovskite solar cells using superior low temperature TiO2. Energy Environ Sci, 2015, 8: 3208–3214

    Article  Google Scholar 

  56. 56

    Fang H, Li J, Ding J, et al. An origami perovskite photodetector with spatial recognition ability. ACS Appl Mater Interfaces, 2017, 9: 10921–10928

    Article  Google Scholar 

  57. 57

    Lin CH, Tsai DS, Wei TC, et al. Highly deformable origami paper photodetector arrays. ACS Nano, 2017, 11: 10230–10235

    Article  Google Scholar 

  58. 58

    Cai C, Ma Y, Jeon J, et al. Epitaxial growth of large-grain NiSe films by solid-state reaction for high-responsivity photodetector arrays. Adv Mater, 2017, 29: 1606180

    Article  Google Scholar 

  59. 59

    Lopez-Sanchez O, Lembke D, Kayci M, et al. Ultrasensitive photodetectors based on monolayer MoS2. Nat Nanotechnol, 2013, 8: 497–501

    Article  Google Scholar 

  60. 60

    Stranks SD, Snaith HJ. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat Nanotechnol, 2015, 10: 391–402

    Article  Google Scholar 

  61. 61

    Fan X, Xu P, Zhou D, et al. Fast and efficient preparation of exfoliated 2H MoS2 nanosheets by sonication-assisted lithium intercalation and infrared laser-induced 1T to 2H phase reversion. Nano Lett, 2015, 15: 5956–5960

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (51322202), and the Young 1000 Talents Global Recruitment Program of China. Xing G acknowledges the financial support from Macau Science and Technology Development Fund (FDCT-116/2016/A3 and FDCT-091/2017/A2), Research Grant (SRG2016-00087-FST) from the University of Macau, the Natural Science Foundation of China (91733302, 61605073 and 2015CB932200), and the Young 1000 Talents Global Recruitment Program of China.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Guichuan Xing, Xiao Huang or Wei Huang.

Additional information

Zhipeng Zhang received his bachelor degree in 2015 at Nanjing Tech University. He is now a master student in the Institute of Advanced Materials (IAM) of Nanjing Tech University. His current research interest is the synthesis and applications of perovskite nanocrystals.

Guichuan Xing obtained his BSc in 2003 at Fudan University and PhD in 2011 at National University of Singapore. He joined IAM of Nanjing Tech University as a professor in 2014. His current research interest is nonlinear optical properties and ultrafast carrier dynamics in novel optoelectronic materials and devices.

Xiao Huang received her bachelor’s degree from the School of Materials Science and Engineering at Nanyang Technological University in Singapore in 2006 and completed her PhD in 2011 under the supervision of Prof. Hua Zhang and Prof. Freddy Boey. She is currently a professor at the Institute of Advanced Materials (IAM), Nanjing Tech University. Her research interest includes the synthesis and applications of two-dimensional nanomaterial-based hybrids.

Wei Huang received his BSc, MSc, and PhD degrees in Chemistry from Peking University in 1983, 1988, and 1992, respectively. He is a member of the Chinese Academy of Sciences, and a foreign member of the Russian Academy of Sciences. In 2001, he became a chair professor at Fudan University, where he founded the Institute of Advanced Materials. In June 2006, he was appointed the Deputy President of Nanjing University of Posts and Telecommunications, where he founded the Key Laboratory for Organic Electronics and Information Displays. In July 2012, he was appointed the President of Nanjing Tech University and moved to Northwestern Polytechnical University in 2017, where he is currently the Provost of Northwestern Polytechnical University. His research interest includes organic optoelectronics, nanomaterials, flexible electronics, and bioelectronics.

Electronic supplementary material

40843_2018_9274_MOESM1_ESM.pdf

Unconventional solution-phase epitaxial growth of organic-inorganic hybrid perovskite nanocrystals on metal sulfide nanosheets

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Sun, F., Zhu, Z. et al. Unconventional solution-phase epitaxial growth of organic-inorganic hybrid perovskite nanocrystals on metal sulfide nanosheets. Sci. China Mater. 62, 43–53 (2019). https://doi.org/10.1007/s40843-018-9274-y

Download citation

Keywords

  • organic-inorganic hybrid perovskite
  • transition metal chalcogenide
  • epitaxial growth
  • paper-based photodetector