Enhanced thermoelectric performance of Cu12Sb4S13−δ tetrahedrite via nickel doping

  • Fu-Hua Sun (孙富华)
  • Jinfeng Dong (董金峰)
  • Shaugath Dey
  • Asfandiyar
  • Chao-Feng Wu (吴超峰)
  • Yu Pan (潘瑜)
  • Huaichao Tang (唐怀超)
  • Jing-Feng Li (李敬锋)
Articles
  • 93 Downloads

Abstract

Cu12Sb4S13 tetrahedrite has received great attention as an earth-abundant and environmental-friendly thermoelectric material. This work aims to uncover the thermoelectric performance-enhancing effect and the mechanism of nickel doping on tetrahedrite. A series of Cu12−xNi x Sb4S13−δ (x = 0.5, 0.7, 1.0, 1.5 and 2.0) compounds were synthesized by mechanical alloying combined with spark plasma sintering. It is found that the thermal conductivity sharply reduces with increasing Ni content over the entire temperature range, < 0.9 W m−1 K−1, accompanied with an enhanced thermoelectric power factor. The model predicted that the reduced lattice thermal conductivity is attributed to mid-frequency phonon scattering, caused by precipitates and dislocations resulting from Ni doping. Consequently, a high ZT value up to 0.95 at 723 K was achieved for Cu11NiSb4S13−δ, corresponding to a ∼46% increase over non-doped Cu12Sb4S13−δ. Furthermore, the cyclic measurement showed that the Ni-doped tetrahedrites displayed high chemical stability.

Keywords

nickel doping tetrahedrite thermoelectric 

Ni掺杂提高Cu12Sb4S13−δ黝铜矿热电性能

摘要

Cu12Sb4S13是一种储量丰富、 环境友好的天然矿物, 被热电领域普遍关注. 本研究旨在揭示Ni掺杂提高黝铜矿材料热电性能的机理. 采用机械合金化(MA)结合放电等离子体烧结(SPS)的方法制备出Cu12−xNi x Sb4S13−δ (x = 0.5, 0.7, 1.0, 1.5, 2.0)样品. 实验结果表明, 在测量温度范围内(323–723 K), 随着Ni含量的增加, 样品的热导率急剧下降(< 0.9 W m−1 K−1), 同时热电功率因子逐渐增加. 理论模型计算表明, 晶格热导率的降低主要来源于Ni掺杂引起的析出相及位错对中频声子的强散射作用. 由于较低的热导率和较高的功率因子, Cu11NiSb4S13−δ 样品在723 K时获得最高ZT值0.95, 相对于未掺杂样品, 其热电性能提高了46%. 同时, 热循环测试表明, 通过Ni掺杂提高了黝铜矿热电材料的化学稳定性.

Notes

Acknowledgements

This work was supported by the Basic Science Center Project of National Natural Science Foundation of China (51788104 and 11474176), as well as Shenzhen Science and Technology Plan (JCYJ20150827165038323).

Supplementary material

40843_2018_9241_MOESM1_ESM.pdf (2.9 mb)
Enhanced thermoelectric performance of Cu12Sb4S13−δ tetrahedrite via nickel doping

References

  1. 1.
    Shakouri A. Recent developments in semiconductor thermoelectric physics and materials. Annu Rev Mater Res, 2011, 41: 399–431CrossRefGoogle Scholar
  2. 2.
    Zhang QH, Huang XY, Bai SQ, et al. Thermoelectric devices for power generation: recent progress and future challenges. Adv Eng Mater, 2016, 18: 194–213CrossRefGoogle Scholar
  3. 3.
    Li JF, Liu WS, Zhao LD, et al. High-performance nanostructured thermoelectric materials. NPG Asia Mater, 2010, 2: 152–158CrossRefGoogle Scholar
  4. 4.
    Zhao LD, Tan G, Hao S, et al. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science, 2016, 351: 141–144CrossRefGoogle Scholar
  5. 5.
    Li JF, Pan Y, Wu CF, et al. Processing of advanced thermoelectric materials. Sci China Technol Sci, 2017, 60: 1347–1364CrossRefGoogle Scholar
  6. 6.
    Li J. Unexpected boost of thermoelectric performance by magnetic nanoparticles. Sci China Mater, 2017, 60: 1023–1024CrossRefGoogle Scholar
  7. 7.
    Liu W, Lukas KC, McEnaney K, et al. Studies on the Bi2Te3–Bi2Se3–Bi2S3 system for mid-temperature thermoelectric energy conversion. Energy Environ Sci, 2013, 6: 552–560CrossRefGoogle Scholar
  8. 8.
    Pei Y, LaLonde A, Iwanaga S, et al. High thermoelectric figure of merit in heavy hole dominated PbTe. Energy Environ Sci, 2011, 4: 2085–2089CrossRefGoogle Scholar
  9. 9.
    Qiu P, Zhang T, Qiu Y, et al. Sulfide bornite thermoelectric material: a natural mineral with ultralow thermal conductivity. Energy Environ Sci, 2014, 7: 4000–4006CrossRefGoogle Scholar
  10. 10.
    Chen D, Zhao Y, Chen Y, et al. Thermoelectric enhancement of ternary copper chalcogenide nanocrystals by magnetic nickel doping. Adv Electron Mater, 2016, 2: 1500473CrossRefGoogle Scholar
  11. 11.
    Liu G, Chen K, Li J, et al. Combustion synthesis of Cu2SnSe3 thermoelectric materials. J Eur Ceramic Soc, 2016, 36: 1407–1415CrossRefGoogle Scholar
  12. 12.
    Vaqueiro P, Guélou G, Kaltzoglou A, et al. The influence of mobile copper ions on the glass-like thermal conductivity of copper-rich tetrahedrites. Chem Mater, 2017, 29: 4080–4090CrossRefGoogle Scholar
  13. 13.
    Lu X, Morelli DT. Natural mineral tetrahedrite as a direct source of thermoelectric materials. Phys Chem Chem Phys, 2013, 15: 5762CrossRefGoogle Scholar
  14. 14.
    Pfitzner A, Evain M, Petricek V. Cu12Sb4S13: A temperature-dependent structure investigation. Acta Crystlogr B Struct Sci, 1997, 53: 337–345CrossRefGoogle Scholar
  15. 15.
    Chetty R, Bali A, Mallik RC. Tetrahedrites as thermoelectric materials: an overview. J Mater Chem C, 2015, 3: 12364–12378CrossRefGoogle Scholar
  16. 16.
    Suekuni K, Tsuruta K, Ariga T, et al. Thermoelectric properties of mineral tetrahedrites Cu10Tr2Sb4S13 with low thermal conductivity. Appl Phys Express, 2012, 5: 051201CrossRefGoogle Scholar
  17. 17.
    Suekuni K, Tsuruta K, Kunii M, et al. High-performance thermoelectric mineral Cu12-xNixSb4S13 tetrahedrite. J Appl Phys, 2013, 113: 043712–043712CrossRefGoogle Scholar
  18. 18.
    Heo J, Laurita G, Muir S, et al. Enhanced thermoelectric performance of synthetic tetrahedrites. Chem Mater, 2014, 26: 2047–2051CrossRefGoogle Scholar
  19. 19.
    Suekuni K, Tomizawa Y, Ozaki T, et al. Systematic study of electronic and magnetic properties for Cu12–xTMxSb4S13 (TM = Mn, Fe, Co, Ni, and Zn) tetrahedrite. J Appl Phys, 2014, 115: 143702CrossRefGoogle Scholar
  20. 20.
    Lu X, Morelli DT, Xia Y, et al. Increasing the thermoelectric figure of merit of tetrahedrites by co-doping with nickel and zinc. Chem Mater, 2015, 27: 408–413CrossRefGoogle Scholar
  21. 21.
    Barbier T, Lemoine P, Gascoin S, et al. Structural stability of the synthetic thermoelectric ternary and nickel-substituted tetrahedrite phases. J Alloys Compd, 2015, 634: 253–262CrossRefGoogle Scholar
  22. 22.
    Barbier T, Rollin-Martinet S, Lemoine P, et al. Thermoelectric materials: a new rapid synthesis process for nontoxic and highperformance tetrahedrite compounds. J Am Ceram Soc, 2016, 99: 51–56CrossRefGoogle Scholar
  23. 23.
    Kosaka Y, Suekuni K, Hashikuni K, et al. Effects of Ge and Sn substitution on the metal–semiconductor transition and thermoelectric properties of Cu12Sb4S13 tetrahedrite. Phys Chem Chem Phys, 2017, 19: 8874–8879CrossRefGoogle Scholar
  24. 24.
    Bouyrie Y, Candolfi C, Ohorodniichuk V, et al. Crystal structure, electronic band structure and high-temperature thermoelectric properties of Te-substituted tetrahedrites Cu12Sb4-xTexS13 (0.5=x=2.0). J Mater Chem C, 2015, 3: 10476–10487CrossRefGoogle Scholar
  25. 25.
    Sun FH, Wu CF, Li Z, et al. Powder metallurgically synthesized Cu12Sb4S13 tetrahedrites: phase transition and high thermoelectricity. RSC Adv, 2017, 7: 18909–18916CrossRefGoogle Scholar
  26. 26.
    Kalapsazova M, Stoyanova R, Zhecheva E, et al. Sodium deficient nickel–manganese oxides as intercalation electrodes in lithium ion batteries. J Mater Chem A, 2014, 2: 19383–19395CrossRefGoogle Scholar
  27. 27.
    Lee Y, Lo SH, Chen C, et al. Contrasting role of antimony and bismuth dopants on the thermoelectric performance of lead selenide. Nat Commun, 2014, 5: 3640Google Scholar
  28. 28.
    Chen Z, Ge B, Li W, et al. Vacancy-induced dislocations within grains for high-performance PbSe thermoelectrics. Nat Commun, 2017, 8: 13828CrossRefGoogle Scholar
  29. 29.
    Olvera AA, Moroz NA, Sahoo P, et al. Partial indium solubility induces chemical stability and colossal thermoelectric figure of merit in Cu2Se. Energy Environ Sci, 2017, 10: 1668–1676CrossRefGoogle Scholar
  30. 30.
    Callaway J, von Baeyer HC. Effect of point imperfections on lattice thermal conductivity. Phys Rev, 1960, 120: 1149–1154CrossRefGoogle Scholar
  31. 31.
    Morelli DT, Heremans JP, Slack GA. Estimation of the isotope effect on the lattice thermal conductivity of group IV and group III-V semiconductors. Phys Rev B, 2002, 66: 195304CrossRefGoogle Scholar
  32. 32.
    Zou J, Kotchetkov D, Balandin AA, et al. Thermal conductivity of GaN films: Effects of impurities and dislocations. J Appl Phys, 2002, 92: 2534–2539CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Fu-Hua Sun (孙富华)
    • 1
  • Jinfeng Dong (董金峰)
    • 1
  • Shaugath Dey
    • 2
  • Asfandiyar
    • 1
  • Chao-Feng Wu (吴超峰)
    • 1
  • Yu Pan (潘瑜)
    • 1
  • Huaichao Tang (唐怀超)
    • 1
  • Jing-Feng Li (李敬锋)
    • 1
    • 3
  1. 1.State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and EngineeringTsinghua UniversityBeijingChina
  2. 2.School of Materials Science and EngineeringUniversity of New South WalesSydney Australia
  3. 3.Advanced Materials Institute, Graduate School at ShenzhenTsinghua UniversityShenzhenChina

Personalised recommendations