Science China Materials

, Volume 61, Issue 6, pp 831–838 | Cite as

Maximizing the visible light photoelectrochemical activity of B/N-doped anatase TiO2 microspheres with exposed dominant {001} facets

  • Xingxing Hong (洪星星)
  • Yuyang Kang (康宇阳)
  • Chao Zhen (甄超)
  • Xiangdong Kang (康向东)
  • Li-Chang Yin (尹利长)
  • John T S Irvine
  • Lianzhou Wang (王连洲)
  • Gang Liu (刘岗)
  • Hui-Ming Cheng (成会明)


Anatase TiO2 microspheres with exposed dominant BBBBB001BBBBB facets were doped with interstitial boron to have a concentration gradient with the maximum concentration at the surface. They were then further doped with substitutional nitrogen by heating in an ammonia atmosphere at different temperatures from 440 to 560°C to give surface N concentrations ranging from 7.03 to 15.47 at%. The optical absorption, atomic and electronic structures and visible-light photoelectrochemical water oxidation activity of these materials were investigated. The maximum activity of the doped TiO2 was achieved at a nitrogen doping temperature of 520°C that gave a high absorbance over the whole visible light region but with no defect-related background absorption.


photoelectrochemistry red TiO2 water splitting doping 



本文以锐钛矿TiO2微米球光催化材料为研究对象, 其表面主要由BBBBB001BBBBB晶面组成, 间隙掺杂硼原子在微米球中呈浓度梯度分布, 浓度 最高点位于表面. 通过对其在氨气气氛、不同温度下(440–560°C)进行热处理, 可实现氮替代晶格氧的掺杂, 氮原子掺杂的浓度随着热处理 温度的增加, 由7.03增加到15.47 at%. 随着掺杂氮浓度的增加, 所得掺杂TiO2微米球的可见光吸收强度相应提高. 进一步研究所得掺杂TiO2 微米球的可见光光吸收、原子和电子结构与可见光光电催化水氧化活性的关联特性, 发现在520°C下所得氮掺杂TiO2的可见光光电催化 水氧化活性最大, 该样品吸收光谱的显著特征是在可见光区吸光率高, 且没有与缺陷相关联的背底吸收.



This work was supported by the Major Basic Research Program, Ministry of Science and Technology of China (2014CB239401), the National Natural Science Fundation of China (51422210, 21633009, 51629201 and 51521091), the Key Research Program of Frontier Sciences CAS (QYZDB-SSW-JSC039). Liu G thanks Newton Advanced Fellowship.

Supplementary material

40843_2018_9234_MOESM1_ESM.pdf (504 kb)
Supplementary Information


  1. 1.
    Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238: 37–38CrossRefGoogle Scholar
  2. 2.
    Zou Z, Ye J, Sayama K, et al. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature, 2001, 414: 625–627CrossRefGoogle Scholar
  3. 3.
    Wang X, Maeda K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater, 2009, 8: 76–80CrossRefGoogle Scholar
  4. 4.
    Tada H, Mitsui T, Kiyonaga T, et al. All-solid-state Z-scheme in CdS–Au–TiO2 three-component nanojunction system. Nat Mater, 2006, 5: 782–786CrossRefGoogle Scholar
  5. 5.
    Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev, 2009, 38: 253–278CrossRefGoogle Scholar
  6. 6.
    Yan H, Yang J, Ma G, et al. Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt–PdS/CdS photocatalyst. J Catal, 2009, 266: 165–168CrossRefGoogle Scholar
  7. 7.
    Hu S, Shaner MR, Beardslee JA, et al. Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science, 2014, 344: 1005–1009CrossRefGoogle Scholar
  8. 8.
    Yang J, Wang D, Han H, et al. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc Chem Res, 2013, 46: 1900–1909CrossRefGoogle Scholar
  9. 9.
    Maeda K, Teramura K, Lu D, et al. Photocatalyst releasing hydrogen from water. Nature, 2006, 440: 295–295CrossRefGoogle Scholar
  10. 10.
    Wang Q, Hisatomi T, Jia Q, et al. Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nat Mater, 2016, 15: 611–615CrossRefGoogle Scholar
  11. 11.
    Pan C, Takata T, Nakabayashi M, et al. A complex perovskite-type oxynitride: the first photocatalyst for water splitting operable at up to 600 nm. Angew Chem Int Ed, 2015, 54: 2955–2959CrossRefGoogle Scholar
  12. 12.
    Zhang G, Liu G, Wang L, et al. Inorganic perovskite photocatalysts for solar energy utilization. Chem Soc Rev, 2016, 45: 5951–5984CrossRefGoogle Scholar
  13. 13.
    Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293: 269–271CrossRefGoogle Scholar
  14. 14.
    Chen X, Liu L, Yu PY, et al. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science, 2011, 331: 746–750CrossRefGoogle Scholar
  15. 15.
    Asahi R, Morikawa T, Irie H, et al. Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects. Chem Rev, 2014, 114: 9824–9852CrossRefGoogle Scholar
  16. 16.
    Kapilashrami M, Zhang Y, Liu YS, et al. Probing the optical property and electronic structure of TiO2 nanomaterials for renewable energy applications. Chem Rev, 2014, 114: 9662–9707CrossRefGoogle Scholar
  17. 17.
    Zong X, Xing Z, Yu H, et al. Photocatalytic water oxidation on F, Nco-doped TiO2 with dominant exposed BBBBB001BBBBB facets under visible light. Chem Commun, 2011, 47: 11742CrossRefGoogle Scholar
  18. 18.
    Zhao W, Ma W, Chen C, et al. Efficient degradation of toxic organic pollutants with Ni2O3/TiO2-xBx under visible irradiation. J Am Chem Soc, 2004, 126: 4782–4783CrossRefGoogle Scholar
  19. 19.
    Sun Q, Cortie D, Zhang S, et al. The formation of defect-pairs for highly efficient visible-light catalysts. Adv Mater, 2017, 29: 1605123CrossRefGoogle Scholar
  20. 20.
    Parks Cheney C, Vilmercati P, Martin EW, et al. Origins of electronic band gap reduction in Cr/N codoped TiO2. Phys Rev Lett, 2014, 112: 036404CrossRefGoogle Scholar
  21. 21.
    Gai Y, Li J, Li SS, et al. Design of narrow-gap TiO2: A passivated codoping approach for enhanced photoelectrochemical activity. Phys Rev Lett, 2009, 102: 036402CrossRefGoogle Scholar
  22. 22.
    Zhu W, Qiu X, Iancu V, et al. Band gap narrowing of titanium oxide semiconductors by noncompensated anion-cation codoping for enhanced visible-light photoactivity. Phys Rev Lett, 2009, 103: 226401CrossRefGoogle Scholar
  23. 23.
    Liu G, Wang L, Sun C, et al. Band-to-band visible-light photon excitation and photoactivity induced by homogeneous nitrogen doping in layered titanates. Chem Mater, 2009, 21: 1266–1274CrossRefGoogle Scholar
  24. 24.
    Liu G, Wang L, Yang HG, et al. Titania-based photocatalysts— crystal growth, doping and heterostructuring. J Mater Chem, 2010, 20: 831–843CrossRefGoogle Scholar
  25. 25.
    Liu G, Yin LC, Wang J, et al. A red anatase TiO2 photocatalyst for solar energy conversion. Energy Environ Sci, 2012, 5: 9603CrossRefGoogle Scholar
  26. 26.
    Irie H, Watanabe Y, Hashimoto K. Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders. J Phys Chem B, 2003, 107: 5483–5486CrossRefGoogle Scholar
  27. 27.
    Liu G, Pan J, Yin L, et al. Heteroatom-modulated switching of photocatalytic hydrogen and oxygen evolution preferences of anatase TiO2 microspheres. Adv Funct Mater, 2012, 22: 3233–3238CrossRefGoogle Scholar
  28. 28.
    Yang HG, Sun CH, Qiao SZ, et al. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature, 2008, 453: 638–641CrossRefGoogle Scholar
  29. 29.
    Liu G, Niu P, Wang L, et al. Achieving maximum photo-oxidation reactivity of Cs0.68Ti1.83O4-xNx photocatalysts through valence band fine-tuning. Catal Sci Technol, 2011, 1: 222CrossRefGoogle Scholar
  30. 30.
    Ohsaka T, Izumi F, Fujiki Y. Raman spectrum of anatase, TiO2. J Raman Spectrosc, 1978, 7: 321–324CrossRefGoogle Scholar
  31. 31.
    Balachandran U, Eror NG. Raman spectra of titanium dioxide. J Solid State Chem, 1982, 42: 276–282CrossRefGoogle Scholar
  32. 32.
    Tanaka K, White JM. Characterization of species adsorbed on oxidized and reduced anatase. J Phys Chem, 1982, 86: 4708–4714CrossRefGoogle Scholar
  33. 33.
    Sánchez E, López T, Gómez R, et al. Synthesis and characterization of sol–gel Pt/TiO2 catalyst. J Solid State Chem, 1996, 122: 309–314CrossRefGoogle Scholar
  34. 34.
    Liu G, Shi J, Zhang F, et al. A tantalum nitride photoanode modified with a hole-storage layer for highly stable solar water splitting. Angew Chem Int Ed, 2014, 53: 7295–7299CrossRefGoogle Scholar
  35. 35.
    Yang Y, Liu G, Irvine JTS, et al. Enhanced photocatalytic H2 production in core-shell engineered rutile TiO2. Adv Mater, 2016, 28: 5850–5856CrossRefGoogle Scholar
  36. 36.
    Yang Y, Yin LC, Gong Y, et al. An unusual strong visible-light absorption band in red anatase TiO2 photocatalyst induced by atomic hydrogen-occupied oxygen vacancies. Adv Mater, 2018, 30: 1704479CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xingxing Hong (洪星星)
    • 1
    • 2
  • Yuyang Kang (康宇阳)
    • 1
    • 2
  • Chao Zhen (甄超)
    • 1
  • Xiangdong Kang (康向东)
    • 1
  • Li-Chang Yin (尹利长)
    • 1
  • John T S Irvine
    • 3
  • Lianzhou Wang (王连洲)
    • 4
  • Gang Liu (刘岗)
    • 1
    • 2
  • Hui-Ming Cheng (成会明)
    • 1
    • 5
    • 6
  1. 1.Shenyang National Laboratory for Materials ScienceInstitute of Metal Research, Chinese Academy of SciencesShenyangChina
  2. 2.School of Materials Science and EngineeringUniversity of Science and Technology of ChinaShenyangChina
  3. 3.School of ChemistryUniversity of St. AndrewsFifeUK
  4. 4.Nanomaterials CentreSchool of Chemical Engineering and AIBN, the University of Queensland, St LuciaBrisbaneAustralia
  5. 5.Tsinghua-Berkeley Shenzhen InstituteTsinghua UniversityShenzhenChina
  6. 6.Center of Excellence in Environmental StudiesKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations