Science China Materials

, Volume 61, Issue 6, pp 822–830 | Cite as

Engineering oxygen vacancy on rutile TiO2 for efficient electron-hole separation and high solar-driven photocatalytic hydrogen evolution

  • Fang Xiao (肖芳)
  • Wei Zhou (周卫)
  • Bojing Sun (孙博婧)
  • Haoze Li (李昊泽)
  • Panzhe Qiao (乔盼哲)
  • Liping Ren (任丽萍)
  • Xiaojun Zhao (赵小军)
  • Honggang Fu (付宏刚)


Oxygen vacancy (VO) plays a vital role in semiconductor photocatalysis. Rutile TiO2 nanomaterials with controllable contents of VO (0–2.18%) are fabricated via an in situ solid-state chemical reduction strategy, with color from white to black. The bandgap of the resultant rutile TiO2 is reduced from 3.0 to 2.56 eV, indicating the enhanced visible light absorption. The resultant rutile TiO2 with optimal contents of VO (∼2.07%) exhibits a high solar-driven photocatalytic hydrogen production rate of 734 μmol h−1, which is about four times as high as that of the pristine one (185 μmol h−1). The presence of VO elevates the apparent Fermi level of rutile TiO2 and promotes the efficient electronhole separation obviously, which favor the escape of photogenerated electrons and prolong the life-time (7.6×103 ns) of photogenerated charge carriers, confirmed by scanning Kelvin probe microscopy, surface photovoltage spectroscopy and transient-state fluorescence. VO-mediated efficient photogenerated electron-hole separation strategy may provide new insight for fabricating other high-performance semiconductor oxide photocatalysts.


oxygen vacancy rutile TiO2 surface engineering solar-driven photocatalysis hydrogen evolution 



氧空位缺陷在半导体光催化中起重要作用. 本文采用原位固态化学还原策略可控制备了具有不同氧空位含量(0∼2.18%)的金红石TiO2纳米材料, 其带隙由3.0 eV减小到2.56 eV, 颜色由白色变为黑色. 氧空位含量为∼2.07%的样品具有最高的太阳光催化产氢性能(734 μmol h−1), 产氢量约为原始样品(185 μmol h−1)的四倍. 扫描开尔文探针、 表面光电压和瞬态荧光结果表明: 氧空位的出现提升了金红石TiO2的表观费米能级并促进了光生电子-空穴的分离, 有利于光生电子的溢出和光生载流子寿命的延长(7.6×103 ns). 这种由氧空位缺陷诱导的光生电子-空穴高效分离策略为构筑其它高性能半导体氧化物光催化剂提供了新思路.



This work was supported by the Key Program Projects of the National Natural Science Foundation of China (21631004) and the National Natural Science Foundation of China (51672073).

Supplementary material

40843_2018_9222_MOESM1_ESM.pdf (527 kb)
Engineering oxygen vacancy on rutile TiO2 for efficient electron-hole separation and high solar-driven photocatalytic hydrogen evolution


  1. 1.
    Lin L, Zhou W, Gao R, et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature, 2017, 544: 80–83CrossRefGoogle Scholar
  2. 2.
    Yuan YJ, Yu ZT, Chen DQ, et al. Metal-complex chromophores for solar hydrogen generation. Chem Soc Rev, 2017, 46: 603–631CrossRefGoogle Scholar
  3. 3.
    Yang L, Li X, Zhang G, et al. Combining photocatalytic hydrogen generation and capsule storage in graphene based sandwich structures. Nat Commun, 2017, 8: 16049CrossRefGoogle Scholar
  4. 4.
    Wang Q, Hisatomi T, Jia Q, et al. Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nat Mater, 2016, 15: 611–615CrossRefGoogle Scholar
  5. 5.
    Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238: 37–38CrossRefGoogle Scholar
  6. 6.
    Fang WH, Zhang L, Zhang J. A 3.6 nm Ti52–oxo nanocluster with precise atomic structure. J Am Chem Soc, 2016, 138: 7480–7483CrossRefGoogle Scholar
  7. 7.
    Elbanna O, Fujitsuka M, Majima T. g-C3N4/TiO2 mesocrystals composite for H2 evolution under visible-light irradiation and its charge carrier dynamics. ACS Appl Mater Interfaces, 2017, 9: 34844–34854CrossRefGoogle Scholar
  8. 8.
    Hussain H, Tocci G, Woolcot T, et al. Structure of a model TiO2 photocatalytic interface. Nat Mater, 2017, 16: 461–466CrossRefGoogle Scholar
  9. 9.
    Ren XN, Hu ZY, Jin J, et al. Cocatalyzing Pt/PtO phase-junction nanodots on hierarchically porous TiO2 for highly enhanced photocatalytic hydrogen production. ACS Appl Mater Interfaces, 2017, 9: 29687–29698CrossRefGoogle Scholar
  10. 10.
    Selcuk S, Selloni A. Facet-dependent trapping and dynamics of excess electrons at anatase TiO2 surfaces and aqueous interfaces. Nat Mater, 2016, 15: 1107–1112CrossRefGoogle Scholar
  11. 11.
    Sun Z, Liao T, Kou L. Strategies for designing metal oxide nanostructures. Sci China Mater, 2017, 60: 1–24CrossRefGoogle Scholar
  12. 12.
    Niu M, Zhang J, Cao D. I, N-codoping modification of TiO2 for enhanced photoelectrochemical C3N4 splitting in visible-light region. J Phys Chem C, 2017, 121: 26202–26208CrossRefGoogle Scholar
  13. 13.
    Qian L, Yu P, Zeng J, et al. Large-scale functionalization of biomedical porous titanium scaffolds surface with TiO2 nanostructures. Sci China Mater, 2018, 10.1007/s40843-017-9050-0Google Scholar
  14. 14.
    Guo L, Fei C, Zhang R, et al. Impact of sol aging on TiO2 compact layer and photovoltaic performance of perovskite solar cell. Sci China Mater, 2016, 59: 710–718CrossRefGoogle Scholar
  15. 15.
    Li R, Weng Y, Zhou X, et al. Achieving overall water splitting using titanium dioxide-based photocatalysts of different phases. Energy Environ Sci, 2015, 8: 2377–2382CrossRefGoogle Scholar
  16. 16.
    Yu XY, Wu HB, Yu L, et al. Rutile TiO2 submicroboxes with superior lithium storage properties. Angew Chem Int Ed, 2015, 54: 4001–4004CrossRefGoogle Scholar
  17. 17.
    Wu T, Kang X, Kadi MW, et al. Enhanced photocatalytic hydrogen generation of mesoporous rutile TiO2 single crystal with wholly exposed {111} facets. Chin J Catal, 2015, 36: 2103–2108CrossRefGoogle Scholar
  18. 18.
    Maeda K, Ishimaki K, Okazaki M, et al. Cobalt oxide nanoclusters on rutile titania as bifunctional units for water oxidation catalysis and visible light absorption: understanding the structure–activity relationship. ACS Appl Mater Interfaces, 2017, 9: 6114–6122CrossRefGoogle Scholar
  19. 19.
    Nguyen-Phan TD, Luo S, Vovchok D, et al. Visible light-driven H2 production over highly dispersed ruthenia on rutile TiO2 nanorods. ACS Catal, 2016, 6: 407–417CrossRefGoogle Scholar
  20. 20.
    Li L, Yan J, Wang T, et al. Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production. Nat Commun, 2015, 6: 5881CrossRefGoogle Scholar
  21. 21.
    Kim W, Tachikawa T, Moon G, et al. Molecular-level understanding of the photocatalytic activity difference between anatase and rutile nanoparticles. Angew Chem Int Ed, 2014, 53: 14036–14041CrossRefGoogle Scholar
  22. 22.
    Lun Pang C, Lindsay R, Thornton G. Chemical reactions on rutile TiO2 (110). Chem Soc Rev, 2008, 37: 2328–2353CrossRefGoogle Scholar
  23. 23.
    Yang Y, Liu G, Irvine JTS, et al. Enhanced photocatalytic H2 production in core-shell engineered rutile TiO2. Adv Mater, 2016, 28: 5850–5856CrossRefGoogle Scholar
  24. 24.
    Zhao Z, Zhang X, Zhang G, et al. Effect of defects on photocatalytic activity of rutile TiO2 nanorods. Nano Res, 2015, 8: 4061–4071CrossRefGoogle Scholar
  25. 25.
    Schaub R, Thostrup P, Lopez N, et al. Oxygen vacancies as active sites for water dissociation on rutile TiO2 (110). Phys Rev Lett, 2001, 87: 266104CrossRefGoogle Scholar
  26. 26.
    Chen X, Liu L, Yu PY, et al. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science, 2011, 331: 746–750CrossRefGoogle Scholar
  27. 27.
    Zhou W, Li W, Wang JQ, et al. Ordered mesoporous black TiO2 as highly efficient hydrogen evolution photocatalyst. J Am Chem Soc, 2014, 136: 9280–9283CrossRefGoogle Scholar
  28. 28.
    Tan H, Zhao Z, Niu M, et al. A facile and versatile method for preparation of colored TiO2 with enhanced solar-driven photocatalytic activity. Nanoscale, 2014, 6: 10216–10223CrossRefGoogle Scholar
  29. 29.
    Hu W, Zhou W, Zhang K, et al. Facile strategy for controllable synthesis of stable mesoporous black TiO2 hollow spheres with efficient solar-driven photocatalytic hydrogen evolution. J Mater Chem A, 2016, 4: 7495–7502CrossRefGoogle Scholar
  30. 30.
    Chen X, Liu L, Huang F. Black titanium dioxide (TiO2) nanomaterials. Chem Soc Rev, 2015, 44: 1861–1885CrossRefGoogle Scholar
  31. 31.
    Cushing SK, Meng F, Zhang J, et al. Effects of defects on photocatalytic activity of hydrogen-treated titanium oxide nanobelts. ACS Catal, 2017, 7: 1742–1748CrossRefGoogle Scholar
  32. 32.
    Henkel B, Neubert T, Zabel S, et al. Photocatalytic properties of titania thin films prepared by sputtering versus evaporation and aging of induced oxygen vacancy defects. Appl Catal B-Environ, 2016, 180: 362–371CrossRefGoogle Scholar
  33. 33.
    Weng X, Zeng Q, Zhang Y, et al. Facile approach for the syntheses of ultrafine TiO2 nanocrystallites with defects and C heterojunction for photocatalytic water splitting. ACS Sustain Chem Eng, 2016, 4: 4314–4320CrossRefGoogle Scholar
  34. 34.
    Zhang Y, Ding Z, Foster CW, et al. Oxygen vacancies evoked blue TiO2(B) nanobelts with efficiency enhancement in sodium storage behaviors. Adv Funct Mater, 2017, 27: 1700856CrossRefGoogle Scholar
  35. 35.
    Song H, Li C, Lou Z, et al. Effective formation of oxygen vacancies in black TiO2 nanostructures with efficient solar-driven water splitting. ACS Sustain Chem Eng, 2017, 5: 8982–8987CrossRefGoogle Scholar
  36. 36.
    Vásquez GC, Karazhanov SZ, Maestre D, et al. Oxygen vacancy related distortions in rutile TiO2 nanoparticles: A combined experimental and theoretical study. Phys Rev B, 2016, 94: 235209CrossRefGoogle Scholar
  37. 37.
    Zhang Y, Harris CX, Wallenmeyer P, et al. Asymmetric lattice vibrational characteristics of rutile TiO2 as revealed by laser power dependent raman spectroscopy. J Phys Chem C, 2013, 117: 24015–24022CrossRefGoogle Scholar
  38. 38.
    Vásquez GC, Maestre D, Cremades A, et al. Assessment of the Cr doping and size effects on the Raman-active modes of rutile TiO2 by UV/visible polarized Raman spectroscopy. J Raman Spectrosc, 2017, 48: 847–854CrossRefGoogle Scholar
  39. 39.
    Wu Y, Jiang Y, Shi J, et al. Multichannel porous TiO2 hollow nanofibers with rich oxygen vacancies and high grain boundary density enabling superior sodium storage performance. Small, 2017, 13: 1700129CrossRefGoogle Scholar
  40. 40.
    Naldoni A, Allieta M, Santangelo S, et al. Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J Am Chem Soc, 2012, 134: 7600–7603CrossRefGoogle Scholar
  41. 41.
    Zhou W, Sun F, Pan K, et al. Well-ordered large-pore mesoporous anatase TiO2 with remarkably high thermal stability and improved crystallinity: preparation, characterization, and photocatalytic performance. Adv Funct Mater, 2011, 21: 1922–1930CrossRefGoogle Scholar
  42. 42.
    Gao S, Sun Z, Liu W, et al. Atomic layer confined vacancies for atomic-level insights into carbon dioxide electroreduction. Nat Commun, 2017, 8: 14503CrossRefGoogle Scholar
  43. 43.
    Liao X, Zhang Y, Hill M, et al. Highly efficient Ni/CeO2 catalyst for the liquid phase hydrogenation of maleic anhydride. Appl Catal AGeneral, 2014, 488: 256–264CrossRefGoogle Scholar
  44. 44.
    Tan S, Xing Z, Zhang J, et al. Ti3+-TiO2/g-C3N4 mesostructured nanosheets heterojunctions as efficient visible-light-driven photocatalysts. J Catal, 2018, 357: 90–99CrossRefGoogle Scholar
  45. 45.
    Liu J, Liu Y, Liu N, et al. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science, 2015, 347: 970–974CrossRefGoogle Scholar
  46. 46.
    Kronik L, Shapira Y. Surface photovoltage phenomena: theory, experiment, and applications. Surf Sci Rep, 1999, 37: 1–206CrossRefGoogle Scholar
  47. 47.
    Hu Y, Pecunia V, Jiang L, et al. Scanning Kelvin probe microscopy investigation of the role of minority carriers on the switching characteristics of organic field-effect transistors. Adv Mater, 2016, 28: 4713–4719CrossRefGoogle Scholar
  48. 48.
    Zhang H, Wang G, Chen D, et al. Tuning photoelectrochemical performances of Ag−TiO2 nanocomposites via reduction/oxidation of Ag. Chem Mater, 2008, 20: 6543–6549CrossRefGoogle Scholar
  49. 49.
    Mao C, Zuo F, Hou Y, et al. In situ preparation of a Ti3+ self-doped TiO2 film with enhanced activity as photoanode by N2H4 reduction. Angew Chem Int Ed, 2014, 53: 10485–10489CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Fang Xiao (肖芳)
    • 1
    • 2
  • Wei Zhou (周卫)
    • 3
  • Bojing Sun (孙博婧)
    • 3
  • Haoze Li (李昊泽)
    • 3
  • Panzhe Qiao (乔盼哲)
    • 3
  • Liping Ren (任丽萍)
    • 3
  • Xiaojun Zhao (赵小军)
    • 1
    • 2
  • Honggang Fu (付宏刚)
    • 3
  1. 1.Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic−Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Ministry of Education of ChinaTianjinChina
  2. 2.College of ChemistryTianjin Normal UniversityTianjinChina
  3. 3.Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of ChinaHeilongjiang UniversityHarbinChina

Personalised recommendations