A FeSe-based superconductor (C2H8N2) x FeSe with only ethylenediamine intercalated

  • Zhan Gao (高展)
  • Suyuan Zeng (曾涑源)
  • Baichuan Zhu (朱百川)
  • Biao Li (厉彪)
  • Qiaoyan Hao (郝巧燕)
  • Yiwei Hu (胡屹伟)
  • Dake Wang (王大可)
  • Kaibin Tang (唐凯斌)


A new FeSe-based superconductor (C2H8N2) x FeSe with ethylenediamine intercalated into FeSe was successfully synthesized by the solvothermal method, which is the first superconducting instance by metal-free organic molecule intercalation. Elemental analysis and TG-IR-GC/MS data reveal that the ethylenediamine molecules in the interlayer space are separate and intact. The X-ray diffraction (XRD) pattern indicates that the intercalation compound is an orthorhombic lattice rather than a tetragonal lattice applying to almost all the previous FeSe-based superconductors at room temperature. The magnetism measurements display a sharp superconducting transition at ∼10 K which is assigned to (C2H8N2) x FeSe, and a tiny drop in susceptibility at ∼30 K.


ethylenediamine FeSe intercalation superconductivity 

仅有乙二胺插层的铁硒基超导体(C2H8N2) x FeSe


本文采用水热法成功合成了一种新型铁硒基超导体(C2H8N2) x FeSe, FeSe层间只有乙二胺分子而不包含其他任何金属. 碳氢氮元素分析和热重-红外-质谱联合分析的数据都表明层间的乙二胺分子是完整而且独立的. X射线衍射图指出插层化合物是一个正交格子, 而以往铁硒基超导体在常温下几乎都是四方格子. 磁性测量的数据显示产物在10 K左右有一个大的超导转变, 可归结于插层产物(C2H8N2) x FeSe. 此外, 在30 K处也观察到一个很小的超导转变, 这可能是杂质引起的.



This work was financially supported by the National Natural Science Foundation of China (21671182).

Supplementary material

40843_2017_9230_MOESM1_ESM.pdf (121 kb)
A FeSe-based superconductor (C2H8N2)xFeSe with only ethylenediamine intercalated


  1. 1.
    Hsu FC, Luo JY, Yeh KW, et al. Superconductivity in the PbO-type structure α-FeSe. Proc Natl Acad Sci USA, 2008, 105: 14262–14264CrossRefGoogle Scholar
  2. 2.
    Guo J, Jin S, Wang G, et al. Superconductivity in the iron selenide KxFe2Se2 (0≤x≤1.0). Phys Rev B, 2010, 82:180520CrossRefGoogle Scholar
  3. 3.
    Superconductivity at 32 K in single-crystalline RbxFe2ySe2. Phys Rev B, 2011, 83:060512CrossRefGoogle Scholar
  4. 4.
    Krzton-Maziopa A, Shermadini Z, Pomjakushina E, et al. Synthesis and crystal growth of Cs0.8(FeSe0.98)2: a new iron-based superconductor with T c = 27 K. J Phys-Condens Matter, 2011, 23:052203CrossRefGoogle Scholar
  5. 5.
    Ying TP, Chen XL, Wang G, et al. Observation of superconductivity at 30-46 K in AxFe2Se2 (A = Li, Na, Ba, Sr, Ca, Yb and Eu). Sci Rep, 2012, 2:426CrossRefGoogle Scholar
  6. 6.
    Burrard-Lucas M, Free DG, Sedlmaier SJ, et al. Enhancement of the superconducting transition temperature of FeSe by intercalation of a molecular spacer layer. Nat Mater, 2013, 12: 15–19CrossRefGoogle Scholar
  7. 7.
    Krzton-Maziopa A, Pomjakushina EV, Pomjakushin VY, et al. Synthesis of a new alkali metal–organic solvent intercalated iron selenide superconductor with T C ≈ 45 K. J Phys-Condens Matter, 2012, 24:382202CrossRefGoogle Scholar
  8. 8.
    Hatakeda T, Noji T, Kawamata T, et al. New Li-ethylenediamine-Intercalated Superconductor Lix(C2H8N2)yFe2−zSe2 with T C=45 K. J Phys Soc Jpn, 2013, 82:123705CrossRefGoogle Scholar
  9. 9.
    Noji T, Hatakeda T, Hosono S, et al. Synthesis and post-annealing effects of alkaline-metal-ethylenediamine-intercalated superconductors Ax(C2H8N2)yFe2−zSe2 (A=Li, Na) with T C=45 K. Physica C-Superconductivity its Appl, 2014, 504: 8–11CrossRefGoogle Scholar
  10. 10.
    Hosono S, Noji T, Hatakeda T, et al. New intercalation superconductor Lix(C6H16N2)yFe2−zSe2 with a very large interlayer-spacing and T C=38 K. J Phys Soc Jpn, 2014, 83:113704CrossRefGoogle Scholar
  11. 11.
    Hayashi F, Lei H, Guo J, et al. Modulation effect of interlayer spacing on the superconductivity of electron-doped FeSe-based intercalates. Inorg Chem, 2015, 54: 3346–3351CrossRefGoogle Scholar
  12. 12.
    Hosono S, Noji T, Hatakeda T, et al. New superconducting phase of Lix(C6H16N2)yFe2−zSe2 with T C=41 K obtained through the postannealing. J Phys Soc Jpn, 2016, 85:013702CrossRefGoogle Scholar
  13. 13.
    Hosono S, Noji T, Hatakeda T, et al. Superconductivity and intercalation state in the lithium-hexamethylenediamine-intercalated superconductor Lix(C6H16N2)yFe2−zSe2: dependence on the intercalation temperature and lithium content. J Phys Soc Jpn, 2016, 85:104701CrossRefGoogle Scholar
  14. 14.
    Hatakeda T, Noji T, Sato K, et al. New alkali-metal- and 2-phenethylamine-intercalated superconductors Ax(C8H11N)yFe1−zSe (A=Li, Na) with the largest interlayer spacings and TC∼40 K. J Phys Soc Jpn, 2016, 85:103702CrossRefGoogle Scholar
  15. 15.
    Ying T, Chen X, Wang G, et al. Superconducting phases in potassium-intercalated iron selenides. J Am Chem Soc, 2013, 135: 2951–2954CrossRefGoogle Scholar
  16. 16.
    Scheidt EW, Hathwar VR, Schmitz D, et al. Superconductivity at T C=44 K in LixFe2Se2(NH3)y. Eur Phys J B, 2012, 85:279CrossRefGoogle Scholar
  17. 17.
    Sedlmaier SJ, Cassidy SJ, Morris RG, et al. Ammonia-rich high-temperature superconducting intercalates of iron selenide revealed through time-resolved in situ X-ray and neutron diffraction. J Am Chem Soc, 2014, 136: 630–633CrossRefGoogle Scholar
  18. 18.
    Guo J, Lei H, Hayashi F, Superconductivity and phase instability of NH3-free Na-intercalated FeSe1-zSz. Nat Commun, 2014, 5:4756CrossRefGoogle Scholar
  19. 19.
    Boller H, Blaha H. Intercalation phases of TiS2, 2H-NbS2, and 1T-TaS2 with ethylenediamine and trimethylenediamine: A crystal chemical and thermogravimetric study. J Solid State Chem, 1982, 45: 119–126CrossRefGoogle Scholar
  20. 20.
    Morales J, Santos J, Ramos Barrado JR, et al. Synthesis and characterization of diamine intercalation compounds of SnS2 single crystals. J Solid State Chem, 2000, 150: 391–398CrossRefGoogle Scholar
  21. 21.
    Toh ML, Tan KJ, Wei FX, et al. Intercalation of organic molecules into SnS2 single crystals. J Solid State Chem, 2013, 198: 224–230CrossRefGoogle Scholar
  22. 22.
    Yamanaka S, Umemoto K, Zheng Z, et al. Preparation and superconductivity of intercalation compounds of TiNCl with aliphatic amines. J Mater Chem, 2012, 22: 10752–10762CrossRefGoogle Scholar
  23. 23.
    McQueen TM, Huang Q, Ksenofontov V, et al. Extreme sensitivity of superconductivity to stoichiometry in Fe1+δSe. Phys Rev B, 2009, 79:014522CrossRefGoogle Scholar
  24. 24.
    Margadonna S, Takabayashi Y, McDonald MT, et al. Crystal structure of the new FeSe1-x superconductor. Chem Commun, 2008, 130: 5607–5609CrossRefGoogle Scholar
  25. 25.
    McQueen TM, Williams AJ, Stephens PW, et al. Tetragonal-toorthorhombic structural phase transition at 90 K in the superconductor Fe1.01Se. Phys Rev Lett, 2009, 103:057002CrossRefGoogle Scholar
  26. 26.
    Pachmayr U, Nitsche F, Luetkens H, et al. Coexistence of 3d-ferromagnetism and superconductivity in [(Li1-xFex)OH] (Fe1-yLiy)Se. Angew Chem Int Ed, 2015, 54: 293–297CrossRefGoogle Scholar
  27. 27.
    Jin S, Fan X, Wu X, et al. High-TC superconducting phases in organic molecular intercalated iron selenides: synthesis and crystal structures. Chem Commun, 2017, 53: 9729–9732CrossRefGoogle Scholar
  28. 28.
    Zhang AM, Xia TL, Liu K, et al. Superconductivity at 44 K in K intercalated FeSe system with excess Fe. Sci Rep, 2013, 3:1216CrossRefGoogle Scholar
  29. 29.
    Eckert H, Herber RH. A charge transfer model of Lewis base intercalation compounds of FeOCl. J Chem Phys, 1984, 80: 4526–4540CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zhan Gao (高展)
    • 1
  • Suyuan Zeng (曾涑源)
    • 2
  • Baichuan Zhu (朱百川)
    • 1
  • Biao Li (厉彪)
    • 1
  • Qiaoyan Hao (郝巧燕)
    • 1
  • Yiwei Hu (胡屹伟)
    • 1
  • Dake Wang (王大可)
    • 1
  • Kaibin Tang (唐凯斌)
    • 1
  1. 1.Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of ChemistryUniversity of Science and Technology of ChinaHefeiChina
  2. 2.College of Chemistry and Chemical EngineeringLiaocheng UniversityLiaochengChina

Personalised recommendations