Science China Materials

, Volume 61, Issue 8, pp 1078–1084 | Cite as

Unique redox properties in defective CeO2-x nanocrystallines synthesized by laser melting

  • Lu Song (宋路)
  • Jing Ma (马静)
  • Qinghua Zhang (张庆华)
  • Yidan Cao (曹译丹)
  • Rui Ran (冉锐)
  • Zhijian Shen (沈志坚)


Defects in cerium oxide, especially oxygen vacancies, play an essential role in its versatile applications and are efficiently preserved at ambient conditions in a nonequilibrium process. Herein, defective CeO2-x with heterogeneous structure was synthesized by high-energy laser melting, where a large amount of oxygen vacancies and Ce3+ could be introduced, leading to improved visible light absorption, narrowed bandgap and room temperature ferromagnetism. Moreover, this laser melted CeO2-x exhibits significantly enhanced low-temperature oxidation behaviors than the counterpart prepared by normal hydrogen-reduction. This unique redox performance could be attributed to the intragranular diffusion at the boundaries of assembled nanocrystallites. This method paves a new way for introducing unique multi-functions in oxide ceramics.


cerium oxide laser melting defect boundary redox property 



本文采用高能激光熔化技术制备出具有非平衡非均匀结构的CeO2−x纳米晶. 大量氧空位和Ce3+的使可见光吸收率提升, 禁带宽度变窄及室温铁磁性增强. 此外, 与通常氢还原的样品比较, 这种激光熔融得到的CeO2−x呈现出增强的低温氧化能力. 这种独特的氧化还原行为可归因于通过聚并的纳米晶的晶界扩散. 这一方法为多功能氧化物陶瓷的制备提供了一条新的途径.



We thank Dr. Jiang H (Center for Testing & Analyzing of Materials, School of Materials Science and Engineering, Tsinghua University) for the help in XPS data processing and analyzing, and Prof. Chen C and Prof. Thommy Ekstrom for valuable advices and revising the manuscript. This work was supported by the National Natural Science Foundation of China (51272124 and U1605243).


  1. 1.
    Tuller HL. Defect structure and electrical properties of nonstoichiometric CeO2 single crystals. J Electrochem Soc, 1979, 126: 209–217CrossRefGoogle Scholar
  2. 2.
    Trovarelli A. Catalytic properties of ceria and CeO2-containing materials. Catal Rev, 1996, 38: 439–520CrossRefGoogle Scholar
  3. 3.
    Mogensen M. Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ion, 2000, 129: 63–94CrossRefGoogle Scholar
  4. 4.
    Sun C, Li H, Chen L. Nanostructured ceria-based materials: synthesis, properties, and applications. Energy Environ Sci, 2012, 5: 8475–8505CrossRefGoogle Scholar
  5. 5.
    Kharton VV, Figueiredo FM, Navarro L, et al. Ceria-based materials for solid oxide fuel cells. J Mater Sci, 2001, 36: 1105–1117CrossRefGoogle Scholar
  6. 6.
    Rodriguez JA, Ma S, Liu P, et al. Activity of CeOx and TiOx nanoparticles grown on Au(111) in the water-gas shift reaction. Science, 2007, 318: 1757–1760CrossRefGoogle Scholar
  7. 7.
    Ratnasamy C, Wagner JP. Water gas shift catalysis. Catal Rev, 2009, 51: 325–440CrossRefGoogle Scholar
  8. 8.
    Primo A, Marino T, Corma A, et al. Efficient visible-light photocatalytic water splitting by minute amounts of gold supported on nanoparticulate CeO2 obtained by a biopolymer templating method. J Am Chem Soc, 2011, 133: 6930–6933CrossRefGoogle Scholar
  9. 9.
    Wang Z, Jiang S, Li Y, et al. Highly active CeO2 hollow-shell spheres with Al doping. Sci China Mater, 2017, 60: 646–653CrossRefGoogle Scholar
  10. 10.
    Chen D, Ran R, Zhang K, et al. Intermediate-temperature electrochemical performance of a polycrystalline PrBaCo2O5+δ cathode on samarium-doped ceria electrolyte. J Power Sources, 2009, 188: 96–105CrossRefGoogle Scholar
  11. 11.
    Huang C, Wu X, Ren W, et al. Preparation of CeO2 micro/nanostructure and their photocatalytic properties in glow discharge electrolysis. Ceramics Int, 2015, 41: S47–S50CrossRefGoogle Scholar
  12. 12.
    Zhang Y, Shi R, Yang P, et al. Fabrication of electronspun porous CeO2 nanofibers with large surface area for pollutants removal. Ceramics Int, 2016, 42: 14028–14035CrossRefGoogle Scholar
  13. 13.
    Luo GP, Chen CL, Chen SY, et al. Fabrication of micro and submicro Y–Ba–Cu–O particles by excimer laser processing. J Vac Sci Technol A, 2000, 18: 2598CrossRefGoogle Scholar
  14. 14.
    Bayati R, Molaei R, Richmond A, et al. Modification of properties of yttria stabilized zirconia epitaxial thin films by excimer laser annealing. ACS Appl Mater Interfaces, 2014, 6: 22316–22325CrossRefGoogle Scholar
  15. 15.
    Garvie LAJ, Buseck PR. Determination of Ce4+/Ce3+ in electronbeam-damaged CeO2 by electron energy-loss spectroscopy. J Phys Chem Solids, 1999, 60: 1943–1947CrossRefGoogle Scholar
  16. 16.
    Gao P, Wang Z, Fu W, et al. In situ TEM studies of oxygen vacancy migration for electrically induced resistance change effect in cerium oxides. Micron, 2010, 41: 301–305CrossRefGoogle Scholar
  17. 17.
    Winterstein JP, Carter CB. Electron-beam damage and point defects near grain boundaries in cerium oxide. J Eur Ceramic Soc, 2014, 34: 3007–3018CrossRefGoogle Scholar
  18. 18.
    Coey JMD, Venkatesan M, Fitzgerald CB. Donor impurity band exchange in dilute ferromagnetic oxides. Nat Mater, 2005, 4: 173–179CrossRefGoogle Scholar
  19. 19.
    Hong NH, Sakai J, Poirot N, et al. Room-temperature ferromagnetism observed in undoped semiconducting and insulating oxide thin films. Phys Rev B, 2006, 73: 132404CrossRefGoogle Scholar
  20. 20.
    Chen SY, Tsai CH, Huang MZ, et al. Concentration dependence of oxygen vacancy on the magnetism of CeO2 nanoparticles. J Phys Chem C, 2012, 116: 8707–8713CrossRefGoogle Scholar
  21. 21.
    Qian B, Xiao C, Zou J, et al. Assembled nano-structures from micron-sized precursors. RSC Adv, 2014, 4: 30754–30757CrossRefGoogle Scholar
  22. 22.
    Zhou K, Wang X, Sun X, et al. Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes. J Catal, 2005, 229: 206–212CrossRefGoogle Scholar
  23. 23.
    Chen D, Cao Y, Weng D, et al. Defect and transport model of ceria–zirconia solid solutions: Ce0.8Zr0.2O2−δ — An electrical conductivity study. Chem Mater, 2014, 26: 5143–5150CrossRefGoogle Scholar
  24. 24.
    Kim S, Maier J. On the conductivity mechanism of nanocrystalline ceria. J Electrochem Soc, 2002, 149: J73CrossRefGoogle Scholar
  25. 25.
    Lei Y, Ito Y, Browning ND, et al. Segregation effects at grain boundaries in fluorite-structured ceramics. J Am Ceramic Soc, 2002, 85: 2359–2363CrossRefGoogle Scholar
  26. 26.
    Guo X, Waser R. Electrical properties of the grain boundaries of oxygen ion conductors: Acceptor-doped zirconia and ceria. Prog Mater Sci, 2006, 51: 151–210CrossRefGoogle Scholar
  27. 27.
    Barhmi AE, Schouler EJL, Hammou A, et al. Influence of quenching on the electrical properties of yttria-stabilized zirconia. Solid State Ion, 1988, 28–30: 493–496CrossRefGoogle Scholar
  28. 28.
    Esch F, Fabris S, Zhou L, et al. Electron localization determines defect formation on ceria substrates. Science, 2005, 309: 752–755CrossRefGoogle Scholar
  29. 29.
    Liu X, Zhou K, Wang L, et al. Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods. J Am Chem Soc, 2009, 131: 3140–3141CrossRefGoogle Scholar
  30. 30.
    Skorodumova NV, Simak SI, Lundqvist BI, et al. Quantum origin of the oxygen storage capability of ceria. Phys Rev Lett, 2002, 89: 166601CrossRefGoogle Scholar
  31. 31.
    Chiang YM. Nonstoichiometry and electrical conductivity of nanocrystalline CeO2−x. J Electroceramics, 1997, 1: 205–209CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Lu Song (宋路)
    • 1
  • Jing Ma (马静)
    • 1
  • Qinghua Zhang (张庆华)
    • 2
  • Yidan Cao (曹译丹)
    • 3
  • Rui Ran (冉锐)
    • 3
  • Zhijian Shen (沈志坚)
    • 1
    • 4
  1. 1.State Key Lab of New Ceramics and Fine Processing, School of Materials Science and EngineeringTsinghua UniversityBeijingChina
  2. 2.Beijing National Laboratory for Condensed Matter Physics, Institute of PhysicsChinese Academy of SciencesBeijingChina
  3. 3.Key Lab of Advanced Materials (MOE), School of Materials Science and EngineeringTsinghua UniversityBeijingChina
  4. 4.Department of Materials and Environmental Chemistry, Arrhenius LaboratoryStockholm UniversityStockholmSweden

Personalised recommendations