Bimetal-organic-framework derived CoTiO3 mesoporous micro-prisms anode for superior stable power sodium ion batteries

  • Zhen-Dong Huang (黄镇东)
  • Ting-Ting Zhang (张婷婷)
  • Hao Lu (陆昊)
  • Jike Yang (杨记可)
  • Ling Bai (柏玲)
  • Yuehua Chen (陈月花)
  • Xu-Sheng Yang (杨许生)
  • Rui-Qing Liu (刘瑞卿)
  • Xiu-Jing Lin (林秀婧)
  • Yi Li (李谊)
  • Pan Li (李盼)
  • Xianming Liu (刘献明)
  • Xiao-Miao Feng (冯晓苗)
  • Yan-Wen Ma (马延文)
Articles
  • 1 Downloads

Abstract

Durability, rate capability, capacity and tap density are paramount performance metrics for promising anode materials, especially for sodium ion batteries. Herein, a carbon free mesoporous CoTiO3 micro-prism with a high tap density (1.8 g cm−3) is newly developed by using a novel Co-Ti-bimetal organic framework (BMOF) as precursor. It is also interesting to find that the Co-Ti-BMOF derived carbon-free mesoporous CoTiO3 micro-prisms deliver a superior stable and more powerful Na+ storage than other similar reported titania, titanate and their carbon composites. Its achieved capacity retention ratio for 2,000 cycles is up to 90.1% at 5 A g−1.

Keywords

sodium ion batteries anode materials metal-organic framework cobalt titanate mesoporous materials 

双金属-有机框架材料衍生介孔微米棱柱状超高功率和稳定性钠离子电池负极

摘要

负极材料的循环、 倍率、 容量和堆积密度是评价钠离子电池性能的关键指标. 为此本工作开发了一种新型的钴-钛双金属-有机框架结构材料并以其作为前躯体衍生制备了具有1.8 g cm−3高堆积密度的无碳介孔钛酸钴微米棱柱状材料. 作为钠离子电池负极材料该种材料展示了超高稳定性同时拥有比其他类似的钛氧化物、 钛酸盐及其碳基复合材料更优异的倍率性能, 其在5 A g−1的电流密度下循环2000圈后容量保持率高达90.1%.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51402155 and 21373107), Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) (YX03002), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Foundation of NJUPT (NY217077), PolyU Start-up Fund for New Recruits (No. 1-ZE8R).

References

  1. 1.
    Xiao Y, Lee SH, Sun YK. The application of metal sulfides in sodium ion batteries. Adv Energy Mater, 2017, 7: 1601329CrossRefGoogle Scholar
  2. 2.
    Kang W, Wang Y, Xu J. Recent progress in layered metal dichalcogenide nanostructures as electrodes for high-performance so-dium-ion batteries. J Mater Chem A, 2017, 5: 7667–7690CrossRefGoogle Scholar
  3. 3.
    Lao M, Zhang Y, Luo W, et al. Alloy-based anode materials toward advanced sodium-ion batteries. Adv Mater, 2017, 29: 1700622CrossRefGoogle Scholar
  4. 4.
    Liu Z, Zhang Y, Zhao H, et al. Constructing monodispersed MoSe2 anchored on graphene: a superior nanomaterial for sodium storage. Sci China Mater, 2017, 60: 167–177CrossRefGoogle Scholar
  5. 5.
    Zhang Q, Huang Y, Liu Y, et al. F-doped O3-NaNi1/3Fe1/3Mn1/3O2 as high-performance cathode materials for sodium-ion batteries. Sci China Mater, 2017, 60: 629–636CrossRefGoogle Scholar
  6. 6.
    Tao W, Xu ML, Zhu YR, et al. Structure and electrochemical performance of BaLi2−xNaxTi6O14 (0≤x≤2) as anode materials for lithium-ion battery. Sci China Mater, 2017, 60: 728–738CrossRefGoogle Scholar
  7. 7.
    Fang Y, Yu XY, Lou XWD. A practical high-energy cathode for sodium-ion batteries based on uniform P2-Na0.7CoO2 microspheres. Angew Chem Int Ed, 2017, 56: 5801–5805CrossRefGoogle Scholar
  8. 8.
    Zhao Y, Goncharova LV, Zhang Q, et al. Inorganic–organic coating via molecular layer deposition enables long life sodium metal anode. Nano Lett, 2017, 17: 5653–5659CrossRefGoogle Scholar
  9. 9.
    Chen T, Liu Y, Pan L, et al. Electrospun carbon nanofibers as anode materials for sodium ion batteries with excellent cycle performance. J Mater Chem A, 2014, 2: 4117–4121CrossRefGoogle Scholar
  10. 10.
    Xiao L, Cao Y, Henderson WA, et al. Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries. Nano Energy, 2016, 19: 279–288CrossRefGoogle Scholar
  11. 11.
    Li Z, Bommier C, Chong ZS, et al. Mechanism of Na-ion storage in hard carbon anodes revealed by heteroatom doping. Adv Energy Mater, 2017, 7: 1602894CrossRefGoogle Scholar
  12. 12.
    Rahman MM, Glushenkov AM, Ramireddy T, et al. Electrochemical investigation of sodium reactivity with nanostructured Co3O4 for sodium-ion batteries. Chem Commun, 2014, 50: 5057–5060CrossRefGoogle Scholar
  13. 13.
    Chen J, Zhang Y, Zou G, et al. Size-tunable olive-like anatase TiO2 coated with carbon as superior anode for sodium-ion batteries. Small, 2016, 12: 5554–5563CrossRefGoogle Scholar
  14. 14.
    Tahir MN, Oschmann B, Buchholz D, et al. Extraordinary performance of carbon-coated anatase TiO2 as sodium-ion anode. Adv Energy Mater, 2016, 6: 1501489CrossRefGoogle Scholar
  15. 15.
    Zhang Y, Foster CW, Banks CE, et al. Graphene-rich wrapped petal-like rutile TiO2 tuned by carbon dots for high-performance sodium storage. Adv Mater, 2016, 28: 9391–9399CrossRefGoogle Scholar
  16. 16.
    Zou G, Chen J, Zhang Y, et al. Carbon-coated rutile titanium dioxide derived from titanium-metal organic framework with enhanced sodium storage behavior. J Power Sources, 2016, 325: 25–34CrossRefGoogle Scholar
  17. 17.
    Zhang W, Lan T, Ding T, et al. Carbon coated anatase TiO2 mesocrystals enabling ultrastable and robust sodium storage. J Power Sources, 2017, 359: 64–70CrossRefGoogle Scholar
  18. 18.
    Li S, Xie L, Hou H, et al. Alternating voltage induced ordered anatase TiO2 nanopores: An electrochemical investigation of sodium storage. J Power Sources, 2016, 336: 196–202CrossRefGoogle Scholar
  19. 19.
    Hong KJ, Kim SO. Atomic layer deposition assisted sacrificial template synthesis of mesoporous TiO2 electrode for high performance lithium ion battery anodes. Energy Storage Mater, 2016, 2: 27–34CrossRefGoogle Scholar
  20. 20.
    Cui Z, Li C, Yu P, et al. Reaction pathway and wiring network dependent Li/Na storage of micro-sized conversion anode with mesoporosity and metallic conductivity. J Mater Chem A, 2015, 3: 509–514CrossRefGoogle Scholar
  21. 21.
    Wu Y, Liu X, Yang Z, et al. Nitrogen-doped ordered mesoporous anatase TiO2 nanofibers as anode materials for high performance sodium-ion batteries. Small, 2016, 12: 3522–3529CrossRefGoogle Scholar
  22. 22.
    Wang N, Bai Z, Qian Y, et al. Double-walled Sb@TiO2−x nanotubes as a superior high-rate and ultralong-lifespan anode material for Na-ion and Li-ion batteries. Adv Mater, 2016, 28: 4126–4133CrossRefGoogle Scholar
  23. 23.
    Yan D, Yu C, Bai Y, et al. Sn-doped TiO2 nanotubes as superior anode materials for sodium ion batteries. Chem Commun, 2015, 51: 8261–8264CrossRefGoogle Scholar
  24. 24.
    Liao H, Xie L, Zhang Y, et al. Mo-doped gray anatase TiO2: lattice expansion for enhanced sodium storage. Electrochim Acta, 2016, 219: 227–234CrossRefGoogle Scholar
  25. 25.
    He H, Wang H, Sun D, et al. N-doped rutile TiO2/C with significantly enhanced Na storage capacity for Na-ion batteries. Electrochim Acta, 2017, 236: 43–52CrossRefGoogle Scholar
  26. 26.
    Kalubarme RS, Inamdar AI, Bhange DS, et al. Nickel-titanium oxide as a novel anode material for rechargeable sodium-ion batteries. J Mater Chem A, 2016, 4: 17419–17430CrossRefGoogle Scholar
  27. 27.
    Huang ZD, Zhang TT, Lu H, et al. Grain-boundary-rich mesoporous NiTiO3 micro-prism as high tap-density, super rate and long life anode for sodium and lithium ion batteries. Energy Storage Mater, 2017Google Scholar
  28. 28.
    Brown ZL, Smith S, Obrovac MN. Mixed transition metal titanate and vanadate negative electrode materials for Na-ion batteries. J Electrochem Soc, 2015, 162: A15–A20CrossRefGoogle Scholar
  29. 29.
    Guo S, Liu J, Qiu S, et al. Porous ternary TiO2/MnTiO3@C hybrid microspheres as anode materials with enhanced electrochemical performances. J Mater Chem A, 2015, 3: 23895–23904CrossRefGoogle Scholar
  30. 30.
    Bai X, Li T, Zhao XY, et al. Al2O3-modified Ti–Mn–O nanocomposite coated with nitrogen-doped carbon as anode material for high power lithium-ion battery. RSC Adv, 2016, 6: 40953–40961CrossRefGoogle Scholar
  31. 31.
    Lin YJ, Chang YH, Yang WD, et al. Synthesis and characterization of ilmenite NiTiO3 and CoTiO3 prepared by a modified Pechini method. J Non-Crystalline Solids, 2006, 352: 789–794CrossRefGoogle Scholar
  32. 32.
    Acharya T, Choudhary RNP. Structural, dielectric and impedance characteristics of CoTiO3. Mater Chem Phys, 2016, 177: 131–139CrossRefGoogle Scholar
  33. 33.
    Yilmaz G, Yam KM, Zhang C, et al. In situ transformation of MOFs into layered double hydroxide embedded metal sulfides for improved electrocatalytic and supercapacitive performance. Adv Mater, 2017, 29: 1606814CrossRefGoogle Scholar
  34. 34.
    Wu S, Zhu Y, Huo Y, et al. Bimetallic organic frameworks derived CuNi/carbon nanocomposites as efficient electrocatalysts for oxygen reduction reaction. Sci China Mater, 2017, 60: 654–663CrossRefGoogle Scholar
  35. 35.
    Zhou GW, Lee DK, Kim YH, Kim CW, Kang YS. Preparation and spectroscopic characterization of ilmenite-type CoTiO3 nanoparticles. Bull Korean Chem Soc, 2006, 27(3): 368–372CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zhen-Dong Huang (黄镇东)
    • 1
  • Ting-Ting Zhang (张婷婷)
    • 1
  • Hao Lu (陆昊)
    • 1
  • Jike Yang (杨记可)
    • 1
  • Ling Bai (柏玲)
    • 1
  • Yuehua Chen (陈月花)
    • 1
  • Xu-Sheng Yang (杨许生)
    • 2
  • Rui-Qing Liu (刘瑞卿)
    • 1
  • Xiu-Jing Lin (林秀婧)
    • 1
  • Yi Li (李谊)
    • 1
  • Pan Li (李盼)
    • 1
  • Xianming Liu (刘献明)
    • 3
  • Xiao-Miao Feng (冯晓苗)
    • 1
  • Yan-Wen Ma (马延文)
    • 1
  1. 1.Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing University of Posts & TelecommunicationsNanjingChina
  2. 2.Advanced Manufacturing Technology Research Centre, Department of Industrial and Systems EngineeringHong Kong Polytechnic UniversityHong KongChina
  3. 3.College of Chemistry and Chemical EngineeringLuoyang Normal UniversityLuoyangChina

Personalised recommendations