Science China Materials

, Volume 61, Issue 8, pp 1085–1094 | Cite as

Cu x O self-assembled mesoporous microspheres with effective surface oxygen vacancy and their room temperature NO2 gas sensing performance

  • Siyuan Li (李思远)
  • Mengting Wang (王梦婷)
  • Chaozheng Li (李朝峥)
  • Jiajia Liu (刘佳佳)
  • Meng Xu (徐萌)
  • Jia Liu (刘佳)
  • Jiatao Zhang (张加涛)


A series of Cu x O self-assembled mesoporous microspheres (SMMs), with different and controlled morphology (virus-like, urchin-like, spherical), were synthesized by facile liquid phase approach. The morphology of the as-prepared Cu x O SMMs was evolved from spherical to virus-like shape by controlling the ratio of DI water in solution. It can also realize the transformation from loose assembly to dense assembly by extending the reaction time. These Cu x O SMMs exhibited good response to NO2 gas at room temperature, benefiting from their 3D self-assembly structure. Among these the resulting virus-like CuxO SNMMs-based sensor exhibits largely enhanced response to 1 ppm NO2 gas at room temperature. The enhanced response of the virus-like Cu2O SMMsbased sensor can be ascribed to the high surface area, hierarchical 3D nanostructures, micropores for effective gas diffusion, the heterojunctions formed between CuO and Cu2O, and the existence of abundant surface oxygen vacancies.


self-assembly mesoporous Cuxoxygen vacancy NO2 gas sensing 

精准调控表面氧空位的Cu x O自组装介孔微球及其室温检测NO2的气敏性能


本文通过简单液相方法合成了一系列可控的、 不同形貌Cu x O自组装介孔微球(病毒状、 海胆状、 球形). 通过改变N,N二甲基甲酰胺(DMF)溶剂中痕量水的比例, 调控Cu x O微球形貌由球状发展为病毒状; 通过可控的化学动力学过程实现从疏松组装到紧密组装的演变. 由于其三维自组装结构, 这些Cu x O自组装介孔微球在室温下对NO2气体具有优良的响应特性. 结果表明, 病毒状Cu x O自组装介孔微球在 室温下对1 ppm NO2气体具有优异的敏感特性和响应特性. 气敏机理分析发现, 其优异气敏特性来源于病毒状Cu x O自组装介孔微球较高的比表面积、 分级三维纳米结构、 有效的气体扩散孔洞、 表面Cu2O/CuO的纳米异质界面以及表面有效的氧空位缺陷调控.



This work was supported by the National Natural Science Foundation (51501010, 91323301, 51631001, 51372025 and 21643003). Prof. Shaohua Shen’s group from Xi’an Jiaotong University is acknowledged for their support in the electron paramagnetic resonance (EPR) measurements.

Supplementary material

40843_2017_9224_MOESM1_ESM.pdf (2.2 mb)
CuxO self-assembled mesoporous microspheres with effective surface oxygen vacancy and their room temperature NO2 gas sensing performance


  1. 1.
    Zhu J, Hersam MC. Assembly and electronic applications of colloidal nanomaterials. Adv Mater, 2017, 29:1603895CrossRefGoogle Scholar
  2. 2.
    Yan C, Wang T. A new view for nanoparticle assemblies: from crystalline to binary cooperative complementarity. Chem Soc Rev, 2017, 46: 1483–1509CrossRefGoogle Scholar
  3. 3.
    Bian Z, Tachikawa T, Zhang P, et al. A nanocomposite superstructure of metal oxides with effective charge transfer interfaces. Nat Commun, 2014, 5:3038CrossRefGoogle Scholar
  4. 4.
    Yang J, Choi MK, Kim DH, et al. Designed assembly and integration of colloidal nanocrystals for device applications. Adv Mater, 2016, 28: 1176–1207CrossRefGoogle Scholar
  5. 5.
    Nosheen F, Zhang Z, Xiang G, et al. Three-dimensional hierarchical Pt-Cu superstructures. Nano Res, 2015, 8: 832–838CrossRefGoogle Scholar
  6. 6.
    Wu Y, Wang D, Li Y. Understanding of the major reactions in solution synthesis of functional nanomaterials. Sci China Mater, 2016, 59: 938–996CrossRefGoogle Scholar
  7. 7.
    Romo-Herrera JM, Alvarez-Puebla RA, Liz-Marzán LM. Controlled assembly of plasmonic colloidal nanoparticle clusters. Nanoscale, 2011, 3: 1304–1315CrossRefGoogle Scholar
  8. 8.
    Huang L, Zheng J, Huang L, et al. Controlled synthesis and flexible self-assembly of monodisperse Au@semiconductor core/shell hetero- nanocrystals into diverse superstructures. Chem Mater, 2017, 29: 2355–2363CrossRefGoogle Scholar
  9. 9.
    Hu Y, Liu Y, Sun Y. Mesoporous colloidal superparticles of platinum- group nanocrystals with surfactant-free surfaces and enhanced heterogeneous catalysis. Adv Funct Mater, 2015, 25: 1638–1647CrossRefGoogle Scholar
  10. 10.
    Gurlo A. Nanosensors: towards morphological control of gas sensing activity. SnO2, In2O3, ZnO and WO3 case studies. Nanoscale, 2011, 3: 154–165CrossRefGoogle Scholar
  11. 11.
    Yuan W, Huang L, Zhou Q, et al. Ultrasensitive and selective nitrogen dioxide sensor based on self-assembled graphene/polymer composite nanofibers. ACS Appl Mater Interfaces, 2014, 6: 17003–17008CrossRefGoogle Scholar
  12. 12.
    Zhou X, Lee S, Xu Z, et al. Recent progress on the development of chemosensors for gases. Chem Rev, 2015, 115: 7944–8000CrossRefGoogle Scholar
  13. 13.
    Lee JH. Gas sensors using hierarchical and hollow oxide nanostructures: Overview. Sensors Actuat B-Chem, 2009, 140: 319–336CrossRefGoogle Scholar
  14. 14.
    Zhang J, Liu X, Neri G, et al. Nanostructured materials for roomtemperature gas sensors. Adv Mater, 2016, 28: 795–831CrossRefGoogle Scholar
  15. 15.
    Li J, Liu X, Cui J, et al. Hydrothermal synthesis of self-assembled hierarchical tungsten oxides hollow spheres and their gas sensing properties. ACS Appl Mater Interfaces, 2015, 7: 10108–10114CrossRefGoogle Scholar
  16. 16.
    Wang L, Zhang R, Zhou T, et al. Concave Cu2O octahedral nanoparticles as an advanced sensing material for benzene (C6H6) and nitrogen dioxide (NO2) detection. Sensors Actuat B-Chem, 2016, 223: 311–317CrossRefGoogle Scholar
  17. 17.
    Zhang J, Zeng D, Zhu Q, et al. Effect of nickel vacancies on the room-temperature NO2 sensing properties of mesoporous NiO nanosheets. J Phys Chem C, 2016, 120: 3936–3945CrossRefGoogle Scholar
  18. 18.
    Li Y, Zu B, Guo Y, et al. Surface superoxide complex defectsboosted ultrasensitive ppb-level NO2 gas sensors. Small, 2016, 12: 1420–1424CrossRefGoogle Scholar
  19. 19.
    Yang Y, Tian C, Wang J, et al. Facile synthesis of novel 3D nanoflower- like CuxO/multilayer graphene composites for room temperature NOx gas sensor application. Nanoscale, 2014, 6: 7369–7378CrossRefGoogle Scholar
  20. 20.
    Deng S, Tjoa V, Fan HM, et al. Reduced graphene oxide conjugated Cu2O nanowire mesocrystals for high-performance NO2 gas sensor. J Am Chem Soc, 2012, 134: 4905–4917CrossRefGoogle Scholar
  21. 21.
    Zhang J, Liu J, Peng Q, et al. Nearly monodisperse Cu2O and CuO nanospheres: preparation and applications for sensitive gas sensors. Chem Mater, 2006, 18: 867–871CrossRefGoogle Scholar
  22. 22.
    Wan P, Yang W, Wang X, et al. Reduced graphene oxide modified with hierarchical flower-like In(OH)3 for NO2 room-temperature sensing. Sensors Actuat B-Chem, 2015, 214: 36–42CrossRefGoogle Scholar
  23. 23.
    Kim DY, Kim CW, Sohn JH, et al. Ferromagnetism of singlecrystalline Cu2O induced through poly(N-vinyl-2-pyrrolidone) interaction triggering d-orbital alteration. J Phys Chem C, 2015, 119: 13350–13356CrossRefGoogle Scholar
  24. 24.
    Liu X, Wang A, Li L, et al. Structural changes of Au–Cu bimetallic catalysts in COoxidation: In situ XRD, EPR, XANES, and FT-IR characterizations. J Catal, 2011, 278: 288–296CrossRefGoogle Scholar
  25. 25.
    Sekhar H, Narayana Rao D. Preparation, characterization and nonlinear absorption studies of cuprous oxide nanoclusters, microcubes and micro-particles. J Nanopart Res, 2012, 14:976CrossRefGoogle Scholar
  26. 26.
    Yang J, Zhao Y, Zhang J, et al. Removal of elemental mercury from flue gas by recyclable CuCl2 modified magnetospheres catalyst from fly ash. Part 3. Regeneration performance in realistic flue gas atmosphere. Fuel, 2016, 173: 1–7Google Scholar
  27. 27.
    Teo JJ, Chang Y, Zeng HC. Fabrications of hollow nanocubes of Cu2O and Cu via reductive self-assembly of CuO nanocrystals. Langmuir, 2006, 22: 7369–7377CrossRefGoogle Scholar
  28. 28.
    Zhang DF, Zhang H, Guo L, et al. Delicate control of crystallographic facet-oriented Cu2O nanocrystals and the correlated adsorption ability. J Mater Chem, 2009, 19: 5220–5225CrossRefGoogle Scholar
  29. 29.
    Kruk M, Jaroniec M. Gas adsorption characterization of ordered organic-inorganic nanocomposite materials. Chem Mater, 2001, 13: 3169–3183CrossRefGoogle Scholar
  30. 30.
    Wang Y, Lü Y, Zhan W, et al. Synthesis of porous Cu2O/CuO cages using Cu-based metal–organic frameworks as templates and their gas-sensing properties. J Mater Chem A, 2015, 3: 12796–12803CrossRefGoogle Scholar
  31. 31.
    Azimi H, Kuhri S, Osvet A, et al. Effective ligand passivation of Cu2O nanoparticles through solid-state treatment with mercaptopropionic acid. J Am Chem Soc, 2014, 136: 7233–7236CrossRefGoogle Scholar
  32. 32.
    Ghijsen J, Tjeng LH, van Elp J, et al. Electronic structure of Cu2O and CuO. Phys Rev B, 1988, 38: 11322–11330CrossRefGoogle Scholar
  33. 33.
    Zhao YM, Zhu YQ. Room temperature ammonia sensing properties of W18O49 nanowires. Sensors Actuat B-Chem, 2009, 137: 27–31CrossRefGoogle Scholar
  34. 34.
    Chen H, Zhou S, Han Z, et al. A copper-based sorbent with oxygen- vacancy defects from mechanochemical reduction for carbon disulfide absorption. J Mater Chem A, 2016, 4: 17207–17214CrossRefGoogle Scholar
  35. 35.
    Zhang L, Cui Z, Wu Q, et al. Cu2O–CuO composite microframes with well-designed micro/nano structures fabricated via controllable etching of Cu2O microcubes for COgas sensors. CrystEngComm, 2013, 15: 7462–7467CrossRefGoogle Scholar
  36. 36.
    Yang Y, Xu D, Wu Q, et al. Cu2O/CuO bilayered composite as a high-efficiency photocathode for photoelectrochemical hydrogen evolution reaction. Sci Rep, 2016, 6: 35158CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Siyuan Li (李思远)
    • 1
  • Mengting Wang (王梦婷)
    • 1
  • Chaozheng Li (李朝峥)
    • 1
  • Jiajia Liu (刘佳佳)
    • 1
  • Meng Xu (徐萌)
    • 1
  • Jia Liu (刘佳)
    • 1
  • Jiatao Zhang (张加涛)
    • 1
  1. 1.Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & EngineeringBeijing Institute of TechnologyBeijingChina

Personalised recommendations