Advertisement

Science China Materials

, Volume 61, Issue 1, pp 2–22 | Cite as

Science and technology in high-entropy alloys

  • Weiran Zhang (张蔚冉)
  • Peter K. Liaw
  • Yong Zhang (张勇)Email author
Review

Abstract

As human improve their ability to fabricate materials, alloys have evolved from simple to complex compositions, accordingly improving functions and performances, promoting the advancements of human civilization. In recent years, high-entropy alloys (HEAs) have attracted tremendous attention in various fields. With multiple principal components, they inherently possess unique microstructures and many impressive properties, such as high strength and hardness, excellent corrosion resistance, thermal stability, fatigue, fracture, and irradiation resistance, in terms of which they overwhelm the traditional alloys. All these properties have endowed HEAs with many promising potential applications. An in-depth understanding of the essence of HEAs is important to further developing numerous HEAs with better properties and performance in the future. In this paper, we review the recent development of HEAs, and summarize their preparation methods, composition design, phase formation and microstructures, various properties, and modeling and simulation calculations. In addition, the future trends and prospects of HEAs are put forward.

Keywords

high-entropy alloys multiple principal components microstructures and properties phase formation modeling and simulation calculations 

高熵合金材料研究进展

摘要

根据人类开发材料的能力来看, 合金成分经历了从简单到复杂的发展过程. 合金的功能和性能不断改善, 同时促进了人类文明进步.具有多组分的高熵合金(HEAs)可以有效地改善合金的微观结构和性质. 高熵合金具有诸如高强度和高硬度、优异的耐腐蚀性和热稳定性、良好的抗疲劳强度及断裂强度、强耐辐射性等优异的性能, 这是传统的合金无法比拟的. 这些优异的性能也说明高熵合金未来具有非常高的应用前景. 近年来, 高熵合金在各个领域也呈现出快速发展的趋势. 为了更好地了解高熵合金的基础, 未来快速开发出具有更加优异性能的高熵合金, 本文综述了近年来关于高熵合金的发展. 高熵合金的发展已经经历了两个阶段, 第一个阶段为等摩尔-单相固溶体结构的高熵合金, 第二阶段为非等摩尔比的多相固溶体高熵合金. 本文主要讨论了高熵合金的制备方法、组分设计、相形成和微观结构、优异的性能和高熵合金在计算模拟方面的应用, 同时提出了高熵合金的未来发展趋势和前景.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51471025 and 51671020).

References

  1. 1.
    He Q, Ding Z, Ye Y, et al. Design of high-entropy alloy: a perspective from nonideal mixing. JOM, 2017, 69: 2092–2098CrossRefGoogle Scholar
  2. 2.
    Williams J, Starke Jr. E. Progress in structural materials for aerospace systems. Acta Mater, 2003, 51: 5775–5799CrossRefGoogle Scholar
  3. 3.
    Ezugwu E, Wang Z. Titanium alloys and their machinability—a review. J Mater Processing Tech, 1997, 68: 262–274CrossRefGoogle Scholar
  4. 4.
    Schinhammer M, Hänzi A, Löffler J, et al. Design strategy for biodegradable Fe-based alloys for medical applications. Acta Biomater, 2010, 6: 1705–1713CrossRefGoogle Scholar
  5. 5.
    Inoue A, Shen B, Chang C. Fe- and Co-based bulk glassy alloys with ultrahigh strength of over 4,000 MPa. Intermetallics, 2006, 14: 936–944CrossRefGoogle Scholar
  6. 6.
    Inoue A, Zhang W, Zhang T, et al. High-strength Cu-based bulk glassy alloys in Cu–Zr–Ti and Cu–Hf–Ti ternary systems. Acta Mater, 2001, 49: 2645–2652CrossRefGoogle Scholar
  7. 7.
    Gawande M, Goswami A, Felpin F-, et al. Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chem Rev, 2016, 116: 3722–3811CrossRefGoogle Scholar
  8. 8.
    Inoue A, Kong F, Zhu S, et al. Development and applications of highly functional Al-based materials by use of metastable phases. Mat Res, 2015, 18: 1414–1425CrossRefGoogle Scholar
  9. 9.
    Manivasagam G, Suwas S. Biodegradable Mg and Mg based alloys for biomedical implants. Mater Sci Tech, 2014, 30: 515–520CrossRefGoogle Scholar
  10. 10.
    Abdelaziz M, Paradis M, Samuel A, et al. Effect of aluminum addition on the microstructure, tensile properties, and fractography of cast Mg-based alloys. Adv Mater Sci Eng, 2017, 2017: 1–10CrossRefGoogle Scholar
  11. 11.
    Geetha M, Singh A, Asokamani R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants–a review. Prog Mater Sci, 2009, 54: 397–425CrossRefGoogle Scholar
  12. 12.
    Lee M, Lee J, Bae D, et al. A development of Ni-based alloys with enhanced plasticity. Intermetallics, 2004, 12: 1133–1137CrossRefGoogle Scholar
  13. 13.
    Ping D, Gu Y, Cui C, et al. Grain boundary segregation in a Ni–Fe-based (Alloy 718) superalloy. Mater Sci Eng-A, 2007, 456: 99–102CrossRefGoogle Scholar
  14. 14.
    Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater, 2000, 48: 279–306CrossRefGoogle Scholar
  15. 15.
    Guo S, Liu C. Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase. Prog Nat Sci-Mater Int, 2011, 21: 433–446CrossRefGoogle Scholar
  16. 16.
    Cantor B, Chang I, Knight P, et al. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng-A, 2004, 375–377: 213–218CrossRefGoogle Scholar
  17. 17.
    Yeh J, Chen S, Lin S, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater, 2004, 6: 299–303CrossRefGoogle Scholar
  18. 18.
    Yeh J, Chen Y, Lin S, et al. High-entropy alloys–a new era of exploitation. MSF, 2007, 560: 1–9CrossRefGoogle Scholar
  19. 19.
    Miracle D, Senkov O. A critical review of high entropy alloys and related concepts. Acta Mater, 2017, 122: 448–511CrossRefGoogle Scholar
  20. 20.
    Zhang Y, Zuo T, Tang Z, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci, 2014, 61: 1–93CrossRefGoogle Scholar
  21. 21.
    Li DY, Zhang Y. The ultrahigh charpy impact toughness of forged AlxCoCrFeNi high entropy alloys at room and cryogenic temperatures. Intermetallics, 2016, 70: 24–28CrossRefGoogle Scholar
  22. 22.
    Li Z, Tasan C, Pradeep K, et al. A TRIP-assisted dual-phase highentropy alloy: grain size and phase fraction effects on deformation behavior. Acta Mater, 2017, 131: 323–335CrossRefGoogle Scholar
  23. 23.
    Zhao Y, Qiao J, Ma S, et al. A hexagonal close-packed highentropy alloy: the effect of entropy. Mater Des, 2016, 96: 10–15CrossRefGoogle Scholar
  24. 24.
    Sharma A, Deshmukh S, Liaw P, et al. Crystallization kinetics in AlxCrCoFeNi (0≤x≤ 40) high-entropy alloys. Scripta Mater, 2017, 141: 54–57CrossRefGoogle Scholar
  25. 25.
    Zhang Y, Yang X, Liaw P. Alloy design and properties optimization of high-entropy alloys. JOM, 2012, 64: 830–838CrossRefGoogle Scholar
  26. 26.
    Zhang C, Zhang F, Diao H, et al. Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys. Mater Des, 2016, 109: 425–433CrossRefGoogle Scholar
  27. 27.
    Senkov O, Wilks G, Miracle D, et al. Refractory high-entropy alloys. Intermetallics, 2010, 18: 1758–1765CrossRefGoogle Scholar
  28. 28.
    Zhang Y, Zhou Y, Hui X, Wang M, Chen G. Minor alloying behavior in bulk metallic glasses and high-entropy alloys. Sci China Phys Mech Astron, 2008, 51: 427–437Google Scholar
  29. 29.
    Zhang Y, Zhou Y, Lin J, et al. Solid-solution phase formation rules for multi-component alloys. Adv Eng Mater, 2008, 10: 534–538CrossRefGoogle Scholar
  30. 30.
    Lu Z, Wang H, Chen M, et al. An assessment on the future development of high-entropy alloys: summary from a recent workshop. Intermetallics, 2015, 66: 67–76CrossRefGoogle Scholar
  31. 31.
    Pickering E, Jones N. High-entropy alloys: a critical assessment of their founding principles and future prospects. Int Mater Rev, 2016, 61: 183–202CrossRefGoogle Scholar
  32. 32.
    Chuang M, Tsai M, Wang W, et al. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater, 2011, 59: 6308–6317CrossRefGoogle Scholar
  33. 33.
    Zou Y, Ma H, Spolenak R. Ultrastrong ductile and stable highentropy alloys at small scales. Nat Commun, 2015, 6: 7748CrossRefGoogle Scholar
  34. 34.
    Wu Y, Cai Y, Wang T, et al. A refractory Hf25Nb25Ti25Zr25 highentropy alloy with excellent structural stability and tensile properties. Mater Lett, 2014, 130: 277–280CrossRefGoogle Scholar
  35. 35.
    Deng Y, Tasan C, Pradeep K, et al. Design of a twinning-induced plasticity high entropy alloy. Acta Mater, 2015, 94: 124–133CrossRefGoogle Scholar
  36. 36.
    Li D, Li C, Feng T, et al. High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures. Acta Mater, 2017, 123: 285–294CrossRefGoogle Scholar
  37. 37.
    Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science, 2014, 345: 1153–1158CrossRefGoogle Scholar
  38. 38.
    Tang Z, Yuan T, Tsai C, et al. Fatigue behavior of a wrought Al0.5CoCrCuFeNi two-phase high-entropy alloy. Acta Mater, 2015, 99: 247–258CrossRefGoogle Scholar
  39. 39.
    Hemphill M, Yuan T, Wang G, et al. Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys. Acta Mater, 2012, 60: 5723–5734CrossRefGoogle Scholar
  40. 40.
    Gao MC, Yeh JW, Liaw PK, et al. High-Entropy Alloys: Fundamentals and Applications. Switzerland: Springer, 2016CrossRefGoogle Scholar
  41. 41.
    Murty BS, Yeh JW, Ranganathan S. High-Entropy Alloys. Oxford: Butterworth-Heinemann, 2014CrossRefGoogle Scholar
  42. 42.
    Ye Y, Wang Q, Lu J, et al. High-entropy alloy: challenges and prospects. Mater Today, 2016, 19: 349–362CrossRefGoogle Scholar
  43. 43.
    Shi Y, Yang B, Liaw P. Corrosion-resistant high-entropy alloys: a review. Metals, 2017, 7: 43CrossRefGoogle Scholar
  44. 44.
    Gao M, Gao P, Hawk J, et al. Computational modeling of highentropy alloys: structures, thermodynamics and elasticity. J Mater Res, 2017, 32: 3627–3641CrossRefGoogle Scholar
  45. 45.
    Diao H, Feng R, Dahmen K, et al. Fundamental deformation behavior in high-entropy alloys: an overview. Curr Opin Solid State Mater Sci, 2017, 21: 252–266CrossRefGoogle Scholar
  46. 46.
    Zhou Y, Zhang Y, Wang Y, et al. Microstructure and compressive properties of multicomponent Alx(TiVCrMnFeCoNiCu)100−x high-entropy alloys. Mater Sci Eng-A, 2007, 454–455: 260–265CrossRefGoogle Scholar
  47. 47.
    He J, Wang H, Huang H, et al. A precipitation-hardened highentropy alloy with outstanding tensile properties. Acta Mater, 2016, 102: 187–196CrossRefGoogle Scholar
  48. 48.
    Yeh J. Alloy design strategies and future trends in high-entropy alloys. JOM, 2013, 65: 1759–1771CrossRefGoogle Scholar
  49. 49.
    Guo S, Hu Q, Ng C, et al. More than entropy in high-entropy alloys: forming solid solutions or amorphous phase. Intermetallics, 2013, 41: 96–103CrossRefGoogle Scholar
  50. 50.
    Zhang Y, Lu Z, Ma S, et al. Guidelines in predicting phase formation of high-entropy alloys. MRC, 2014, 4: 57–62CrossRefGoogle Scholar
  51. 51.
    Yang X, Zhang Y. Prediction of high-entropy stabilized solidsolution in multi-component alloys. Mater Chem Phys, 2012, 132: 233–238CrossRefGoogle Scholar
  52. 52.
    Borkar T, Gwalani B, Choudhuri D, et al. A combinatorial assessment of AlxCrCuFeNi2 (0<x<1.5) complex concentrated alloys: microstructure, microhardness, and magnetic properties. Acta Mater, 2016, 116: 63–76CrossRefGoogle Scholar
  53. 53.
    Ng C, Guo S, Luan J, et al. Entropy-driven phase stability and slow diffusion kinetics in an Al0.5CoCrCuFeNi high entropy alloy. Intermetallics, 2012, 31: 165–172CrossRefGoogle Scholar
  54. 54.
    Prasad H, Singh S, Panigrahi B. Mechanical activated synthesis of alumina dispersed FeNiCoCrAlMn high entropy alloy. J Alloys Compd, 2017, 692: 720–726CrossRefGoogle Scholar
  55. 55.
    Kao Y, Chen T, Chen S, et al. Microstructure and mechanical property of as-cast,-homogenized, and-deformed AlxCoCrFeNi (0≤x≤2) high-entropy alloys. J Alloys Compd, 2009, 488: 57–64CrossRefGoogle Scholar
  56. 56.
    Huang Y, Chen L, Lui H, et al. Microstructure, hardness, resistivity and thermal stability of sputtered oxide films of Al-CoCrCu0.5NiFe high-entropy alloy. Mater Sci Eng-A, 2007, 457: 77–83CrossRefGoogle Scholar
  57. 57.
    Tung C, Yeh J, Shun T, et al. On the elemental effect of Al-CoCrCuFeNi high-entropy alloy system. Mater Lett, 2007, 61: 1–5CrossRefGoogle Scholar
  58. 58.
    Jiang L, Lu Y, Wu W, et al. Microstructure and mechanical properties of a CoFeNi2V0.5Nb0.75 eutectic high entropy alloy in ascast and heat-treated conditions. J Mater Sci Tech, 2016, 32: 245–250CrossRefGoogle Scholar
  59. 59.
    Santodonato L, Zhang Y, Feygenson M, et al. Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy. Nat Commun, 2015, 6: 5964CrossRefGoogle Scholar
  60. 60.
    Zhang K, Fu Z, Zhang J, et al. Annealing on the structure and properties evolution of the CoCrFeNiCuAl high-entropy alloy. J Alloys Compd, 2010, 502: 295–299CrossRefGoogle Scholar
  61. 61.
    Lin C, Tsai H, Bor H. Effect of aging treatment on microstructure and properties of high-entropy Cu0.5CoCrFeNi alloy. Intermetallics, 2010, 18: 1244–1250CrossRefGoogle Scholar
  62. 62.
    Otto F, Dlouhý A, Somsen C., et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater, 2013, 61: 5743–5755CrossRefGoogle Scholar
  63. 63.
    Kuznetsov A, Shaysultanov D, Stepanov N, et al. Tensile properties of an AlCrCuNiFeCo high-entropy alloy in as-cast and wrought conditions. Mater Sci Eng-A, 2012, 533: 107–118CrossRefGoogle Scholar
  64. 64.
    Barber Z, Blamire M. High throughput thin film materials science. Mater Sci Tech, 2008, 24: 757–770CrossRefGoogle Scholar
  65. 65.
    Ma D, Yao M, Pradeep K, et al. Phase stability of non-equiatomic CoCrFeMnNi high entropy alloys. Acta Mater, 2015, 98: 288–296CrossRefGoogle Scholar
  66. 66.
    Gebhardt T, Music D, Takahashi T, et al. Combinatorial thin film materials science: from alloy discovery and optimization to alloy design. Thin Solid Films, 2012, 520: 5491–5499CrossRefGoogle Scholar
  67. 67.
    Miracle D, Majumdar B, Wertz K, et al. New strategies and tests to accelerate discovery and development of multi-principal element structural alloys. Scripta Mater, 2017, 127: 195–200CrossRefGoogle Scholar
  68. 68.
    Waseem O, Ryu H. Powder metallurgy processing of a WxTaTiVCr high-entropy alloy and its derivative alloys for fusion material applications. Sci Rep, 2017, 7: 1926CrossRefGoogle Scholar
  69. 69.
    Senkov O, Miller J, Miracle D, et al. Accelerated exploration of multi-principal element alloys with solid solution phases. Nat Commun, 2015, 6: 6529CrossRefGoogle Scholar
  70. 70.
    Wang W, Wang W, Wang S, et al. Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi highentropy alloys. Intermetallics, 2012, 26: 44–51CrossRefGoogle Scholar
  71. 71.
    Maiti S, Steurer W. Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy. Acta Mater, 2016, 106: 87–97CrossRefGoogle Scholar
  72. 72.
    Tsau C, Chang Y. Microstructures and mechanical properties of TiCrZrNbNx alloy nitride thin films. Entropy, 2013, 15: 5012–5021CrossRefGoogle Scholar
  73. 73.
    Li C, Li J, Zhao M, et al. Effect of alloying elements on microstructure and properties of multiprincipal elements high-entropy alloys. J Alloys Compd, 2009, 475: 752–757CrossRefGoogle Scholar
  74. 74.
    Wang W, Wang W, Yeh J. Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures. J Alloys Compd, 2014, 589: 143–152CrossRefGoogle Scholar
  75. 75.
    Zhao K, Xia X, Bai H, et al. Room temperature homogeneous flow in a bulk metallic glass with low glass transition temperature. Appl Phys Lett, 2011, 98: 141913CrossRefGoogle Scholar
  76. 76.
    Stefanescu D. Science and Engineering of Casting Solidification. Switzerland: Springer, 2015CrossRefGoogle Scholar
  77. 77.
    Lv Y, Hu R, Yao Z, et al. Cooling rate effect on microstructure and mechanical properties of AlxCoCrFeNi high entropy alloys. Mater Des, 2017, 132: 392–399CrossRefGoogle Scholar
  78. 78.
    Singh S, Wanderka N, Murty B, et al. Decomposition in multicomponent AlCoCrCuFeNi high-entropy alloy. Acta Mater, 2011, 59: 182–190CrossRefGoogle Scholar
  79. 79.
    Ma S, Zhang S, Gao M, et al. A successful synthesis of the CoCrFeNiAl0.3 single-crystal, high-entropy alloy by Bridgman solidification. JOM, 2013, 65: 1751–1758CrossRefGoogle Scholar
  80. 80.
    Guo S, Ng C, Liu C. Anomalous solidification microstructures in Co-free AlxCrCuFeNi2 high-entropy alloys. J Alloys Compd, 2013, 557: 77–81CrossRefGoogle Scholar
  81. 81.
    Ma S, Zhang Y. Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy. Mater Sci Eng-A, 2012, 532: 480–486CrossRefGoogle Scholar
  82. 82.
    Senkov O, Wilks G, Scott J, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics, 2011, 19: 698–706CrossRefGoogle Scholar
  83. 83.
    Tong C, Chen M, Yeh J, et al. Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall Mat Trans A, 2005, 36: 1263–1271CrossRefGoogle Scholar
  84. 84.
    Kumar N, Ying Q, Nie X, et al. High strain-rate compressive deformation behavior of the Al0.1CrFeCoNi high entropy alloy. Mater Des, 2015, 86: 598–602CrossRefGoogle Scholar
  85. 85.
    Salishchev G, Tikhonovsky M, Shaysultanov D, et al. Effect of Mn and V on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system. J Alloys Compd, 2014, 591: 11–21CrossRefGoogle Scholar
  86. 86.
    Chen Z, Chen W, Wu B, et al. Effects of Co and Ti on microstructure and mechanical behavior of Al0.75FeNiCrCo high entropy alloy prepared by mechanical alloying and spark plasma sintering. Mater Sci Eng-A, 2015, 648: 217–224CrossRefGoogle Scholar
  87. 87.
    He J, Liu W, Wang H, et al. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Mater, 2014, 62: 105–113CrossRefGoogle Scholar
  88. 88.
    Lu Y, Dong Y, Guo S, et al. A promising new class of hightemperature alloys: eutectic high-entropy alloys. Sci Rep, 2015, 4: 6200CrossRefGoogle Scholar
  89. 89.
    Yasuda H, Shigeno K, Nagase T. Dynamic strain aging of Al0.3 CoCrFeNi high entropy alloy single crystals. Scripta Mater, 2015, 108: 80–83CrossRefGoogle Scholar
  90. 90.
    Lu Y, Gao X, Jiang L, et al. Directly cast bulk eutectic and neareutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Mater, 2017, 124: 143–150CrossRefGoogle Scholar
  91. 91.
    Shi Y, Yang B, Xie X, et al. Corrosion of AlxCoCrFeNi highentropy alloys: Al-content and potential scan-rate dependent pitting behavior. Corrosion Sci, 2017, 119: 33–45CrossRefGoogle Scholar
  92. 92.
    Tang Z, Huang L, He W, et al. Alloying and processing effects on the aqueous corrosion behavior of high-entropy alloys. Entropy, 2014, 16: 895–911CrossRefGoogle Scholar
  93. 93.
    Hsu Y, Chiang W, Wu J. Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution. Mater Chem Phys, 2005, 92: 112–117CrossRefGoogle Scholar
  94. 94.
    Lee C, Chen Y, Hsu C, et al. The effect of boron on the corrosion resistance of the high entropy alloys Al0.5CoCrCuFeNiBx. J Electrochem Soc, 2007, 154: C424CrossRefGoogle Scholar
  95. 95.
    Zou Y, Wheeler J, Ma H, et al. Nanocrystalline high-entropy alloys: a new paradigm in high-temperature strength and stability. Nano Lett, 2017, 17: 1569–1574CrossRefGoogle Scholar
  96. 96.
    Sathiyamoorthi P, Basu J, Kashyap S, et al. Thermal stability and grain boundary strengthening in ultrafine-grained CoCrFeNi high entropy alloy composite. Mater Des, 2017, 134: 426–433CrossRefGoogle Scholar
  97. 97.
    Kumar N, Li C, Leonard K, et al. Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation. Acta Mater, 2016, 113: 230–244CrossRefGoogle Scholar
  98. 98.
    Xia S, Yang X, Yang T, et al. Irradiation resistance in AlxCoCrFeNi high entropy alloys. JOM, 2015, 67: 2340–2344CrossRefGoogle Scholar
  99. 99.
    Nagase T, Anada S, Rack P, et al. Electron-irradiation-induced structural change in Zr–Hf–Nb alloy. Intermetallics, 2012, 26: 122–130CrossRefGoogle Scholar
  100. 100.
    Jin K, Lu C, Wang L, et al. Effects of compositional complexity on the ion-irradiation induced swelling and hardening in Ni-containing equiatomic alloys. Scripta Mater, 2016, 119: 65–70CrossRefGoogle Scholar
  101. 101.
    Zhang Y, Stocks G, Jin K, et al. Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys. Nat Commun, 2015, 6: 8736CrossRefGoogle Scholar
  102. 102.
    Ullah M, Aidhy D, Zhang Y, et al. Damage accumulation in ionirradiated Ni-based concentrated solid-solution alloys. Acta Mater, 2016, 109: 17–22CrossRefGoogle Scholar
  103. 103.
    He M, Wang S, Shi S, et al. Mechanisms of radiation-induced segregation in CrFeCoNi-based single-phase concentrated solid solution alloys. Acta Mater, 2017, 126: 182–193CrossRefGoogle Scholar
  104. 104.
    Zhao F, Wang H, Wu Y, et al. Thermoelectric performance of PbSnTeSe high-entropy alloys. Mater Res Lett, 2017, 5: 187–194CrossRefGoogle Scholar
  105. 105.
    Poletti M, Fiore G, Gili F, et al. Development of a new high entropy alloy for wear resistance: FeCoCrNiW0.3 and Fe-CoCrNiW0.3 + 5 at.% of C. Mater Des, 2017, 115: 247–254CrossRefGoogle Scholar
  106. 106.
    Zhang Y, Zuo TT, Cheng YQ, et al. High-entropy alloys with high saturation magnetization, electrical resistivity and malleability. Sci Rep, 2013, 3: 1455CrossRefGoogle Scholar
  107. 107.
    Zuo T, Yang X, Liaw P, et al. Influence of Bridgman solidification on microstructures and magnetic behaviors of a non-equiatomic FeCoNiAlSi high-entropy alloy. Intermetallics, 2015, 67: 171–176CrossRefGoogle Scholar
  108. 108.
    Green M, Choi C, Hattrick-Simpers J, et al. Fulfilling the promise of the materials genome initiative with high-throughput experimental methodologies. Appl Phys Rev, 2017, 4: 011105CrossRefGoogle Scholar
  109. 109.
    Drosback M. Materials genome initiative: advances and initiatives. JOM, 2014, 66: 334–335CrossRefGoogle Scholar
  110. 110.
    Jain A, Persson K, Ceder G. Research update: the materials genome initiative: data sharing and the impact of collaborative ab initio databases. APL Mater, 2016, 4: 053102CrossRefGoogle Scholar
  111. 111.
    Stan M. Discovery and design of nuclear fuels. Mater Today, 2009, 12: 20–28CrossRefGoogle Scholar
  112. 112.
    Troparevsky M, Morris J, Kent P, et al. Criteria for predicting the formation of single-phase high-entropy alloys. Phys Rev X, 2015, 5: 011041Google Scholar
  113. 113.
    Rao J, Diao H, Ocelík V, et al. Secondary phases in AlxCoCrFeNi high-entropy alloys: an in-situ TEM heating study and thermodynamic appraisal. Acta Mater, 2017, 131: 206–220CrossRefGoogle Scholar
  114. 114.
    Liu S, Gao M, Liaw P, et al. Microstructures and mechanical properties of AlxCrFeNiTi0.25 alloys. J Alloys Compd, 2015, 619: 610–615CrossRefGoogle Scholar
  115. 115.
    Tang Z, Gao M, Diao H, et al. Aluminum alloying effects on lattice types, microstructures, and mechanical behavior of highentropy alloys systems. JOM, 2013, 65: 1848–1858CrossRefGoogle Scholar
  116. 116.
    Feng R, Gao M, Lee C, et al. Design of light-weight high-entropy alloys. Entropy, 2016, 18: 333CrossRefGoogle Scholar
  117. 117.
    Saal J, Berglund I, Sebastian J, et al. Equilibrium high entropy alloy phase stability from experiments and thermodynamic modeling. Scripta Mater, 2018, 146: 5–8CrossRefGoogle Scholar
  118. 118.
    Guo S, Ng C, Lu J, et al. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J Appl Phys, 2011, 109: 103505–103505CrossRefGoogle Scholar
  119. 119.
    Kaufman L, Ågren J. CALPHAD, first and second generation–birth of the materials genome. Scripta Mater, 2014, 70: 3–6CrossRefGoogle Scholar
  120. 120.
    Zhang C, Zhang F, Chen S, et al. Computational thermodynamics aided high-entropy alloy design. JOM, 2012, 64: 839–845CrossRefGoogle Scholar
  121. 121.
    Zaddach A, Niu C, Koch C, et al. Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy. JOM, 2013, 65: 1780–1789CrossRefGoogle Scholar
  122. 122.
    Ye Y, Liu C, Yang Y. A geometric model for intrinsic residual strain and phase stability in high entropy alloys. Acta Mater, 2015, 94: 152–161CrossRefGoogle Scholar
  123. 123.
    Zhang C, Zhang F, Jin K, et al. Understanding of the elemental diffusion behavior in concentrated solid solution alloys. J Phase Equilib Diffus, 2017, 38: 434–444CrossRefGoogle Scholar
  124. 124.
    Meystre P, Sargent M. Elements of Quantum Optics. Heidelberg: Springer-Verlag Berlin Heidelberg, 2013Google Scholar
  125. 125.
    Glimm J, Jaffe A. Quantum Physics: a Functional Integral Point of View. New York: Springer-Verlag, 2012Google Scholar
  126. 126.
    Snyder J, Rupp M, Hansen K, et al. Finding density functionals with machine learning. Phys Rev Lett, 2012, 108: 253002CrossRefGoogle Scholar
  127. 127.
    Ryabinkin I, Kohut S, Staroverov V. Reduction of electronic wave functions to Kohn-Sham effective potentials. Phys Rev Lett, 2015, 115: 083001CrossRefGoogle Scholar
  128. 128.
    Curtarolo S, Hart G, Nardelli M, et al. The high-throughput highway to computational materials design. Nat Mater, 2013, 12: 191–201CrossRefGoogle Scholar
  129. 129.
    Zuo T, Gao M, Ouyang L, et al. Tailoring magnetic behavior of CoFeMnNiX (X = Al, Cr, Ga, and Sn) high entropy alloys by metal doping. Acta Mater, 2017, 130: 10–18CrossRefGoogle Scholar
  130. 130.
    Ma D, Grabowski B, Körmann F, et al. Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: importance of entropy contributions beyond the configurational one. Acta Mater, 2015, 100: 90–97CrossRefGoogle Scholar
  131. 131.
    Jiang C, Uberuaga B. Efficient ab initio modeling of random multicomponent alloys. Phys Rev Lett, 2016, 116: 105501CrossRefGoogle Scholar
  132. 132.
    Widom M, Huhn W, Maiti S, et al. Hybrid Monte Carlo/molecular dynamics simulation of a refractory metal high entropy alloy. Metall Mat Trans A, 2014, 45: 196–200CrossRefGoogle Scholar
  133. 133.
    Toda-Caraballo I, Wróbel J, Nguyen-Manh D, et al. Simulation and modeling in high entropy alloys. JOM, 2017, 69: 2137–2149CrossRefGoogle Scholar
  134. 134.
    Feng W, Qi Y, Wang S. Effects of short-range order on the magnetic and mechanical properties of FeCoNi(AlSi)x high entropy alloys. Metals, 2017, 7: 482CrossRefGoogle Scholar
  135. 135.
    Tian F, Varga L, Vitos L. Predicting single phase CrMoWX high entropy alloys from empirical relations in combination with firstprinciples calculations. Intermetallics, 2017, 83: 9–16CrossRefGoogle Scholar
  136. 136.
    Choudhury S, Barnard L, Tucker J, et al. Ab-initio based modeling of diffusion in dilute bcc Fe–Ni and Fe-Cr alloys and implications for radiation induced segregation. J Nucl Mater, 2011, 411: 1–14CrossRefGoogle Scholar
  137. 137.
    Smith T, Hooshmand M, Esser B, et al. Atomic-scale characterization and modeling of 60° dislocations in a high-entropy alloy. Acta Mater, 2016, 110: 352–363CrossRefGoogle Scholar
  138. 138.
    Chen H-, Mao H, Chen Q. Database development and Calphad calculations for high entropy alloys: Challenges, strategies, and tips. Mater Chem Phys, 2017Google Scholar
  139. 139.
    Wu W, Ni S, Liu Y, et al. Effects of cold rolling and subsequent annealing on the microstructure of a HfNbTaTiZr high-entropy alloy. J Mater Res, 2016, 31: 3815–3823CrossRefGoogle Scholar
  140. 140.
    Li Z, Pradeep K, Deng Y, et al. Metastable high-entropy dualphase alloys overcome the strength–ductility trade-off. Nature, 2016, 10: 227–230CrossRefGoogle Scholar
  141. 141.
    Yan X, Li J, Zhang W, et al. A brief review of high-entropy films. Mater Chem Phys, 2017Google Scholar
  142. 142.
    Xia S, Gao M, Yang T, et al. Phase stability and microstructures of high entropy alloys ion irradiated to high doses. J Nucl Mater, 2016, 480: 100–108CrossRefGoogle Scholar
  143. 143.
    Jhong Y, Huang C, Lin S. Effects of CH4 flow ratio on the structure and properties of reactively sputtered (CrNbSiTiZr)Cx coatings. Mater Chem Phys, 2017Google Scholar
  144. 144.
    Feng X, Zhang J, Xia Z, et al. Stable nanocrystalline NbMoTaW high entropy alloy thin films with excellent mechanical and electrical properties. Mater Lett, 2018, 210: 84–87CrossRefGoogle Scholar
  145. 145.
    Sheng W, Yang X, Wang C, et al. Nano-crystallization of highentropy amorphous NbTiAlSiWxNy films prepared by magnetron sputtering. Entropy, 2016, 18: 226CrossRefGoogle Scholar
  146. 146.
    Zhang Y, Liu J, Chen S, et al. Serration and noise behaviors in materials. Prog Mater Sci, 2017, 90: 358–460CrossRefGoogle Scholar
  147. 147.
    Carroll R, Lee C, Tsai C-, et al. Experiments and model for serration statistics in low-entropy, medium-entropy, and highentropy alloys. Sci Rep, 2015, 5: 16997CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Weiran Zhang (张蔚冉)
    • 1
  • Peter K. Liaw
    • 2
  • Yong Zhang (张勇)
    • 1
    • 3
    Email author
  1. 1.State Key Laboratory for Advanced Metals and MaterialsUniversity of Science and Technology BeijingBeijingChina
  2. 2.Department of Materials Science and EngineeringUniversity of TennesseeKnoxvilleUSA
  3. 3.Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface ScienceUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations