Room-temperature sintered metal-organic framework nanocrystals: A new type of optical ceramics

室温烧结的金属—有机框架纳米晶: 一种新型光学陶瓷

摘要

光学陶瓷是一种透明的特种陶瓷, 可兼备单晶的高稳定性和玻璃、 流体和其他非晶材料的大尺寸的优点, 是有潜力的激光增益介质. 因为对晶体尺寸和对称性有严格要求, 而且需要高温烧结过程, 只有少数无机非金属材料可用于制备光学陶瓷. 本文报道了一种由配位聚合物(或称金属—有机框架)组成的新型陶瓷. 通过简单地降低溶剂挥发速度, MAF-4(即SOD型二甲基咪唑锌, 也称ZIF-8)的纳米晶即可融合形成致密的陶瓷状块体, 甚至具有毫米级尺寸和高达84%可见光透过率. 该金属—有机光学陶瓷MOOC-1可以负载荧光染料sulforhodamine 640并保持其发光特性, 包括很高的量子产率63.6%和极低的放大自发辐射阈值31 μJ cm-2. 其他几种金属—有机框架的纳米晶也可以在类似条件下融合成陶瓷或光学陶瓷. 考虑到金属—有机框架的结构和功能多样性, 金属—有机陶瓷不但可用作光学器件, 还可能在吸附、 分离、 传感等相关领域展现潜力.

References

  1. 1

    Ikesue A, Aung YL. Ceramic laser materials. Nat Photonics, 2008, 2: 721–727

    Article  Google Scholar 

  2. 2

    Messing GL, Stevenson AJ. Materials science: toward pore-free ceramics. Science, 2008, 322: 383–384

    Article  Google Scholar 

  3. 3

    Walter Koechner, Solid-State Laser Engineering. Springer, New York, NY: 2006 Vol. 1

    Google Scholar 

  4. 4

    Ikesue A, Kinoshita T, Kamata K, et al. Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers. J Am Ceram Soc, 1995, 78: 1033–1040

    Article  Google Scholar 

  5. 5

    Lu J, Lu J, Murai T, et al. Nd3+:Y2O3 ceramic laser. Jpn J Appl Phys, 2001, 40: L1277–L1279

    Google Scholar 

  6. 6

    Ding Y, Chen YP, Zhang X, et al. Controlled intercalation and chemical exfoliation of layered metal–organic frameworks using a chemically labile intercalating agent. J Am Chem Soc, 2017, 139: 9136–9139

    Article  Google Scholar 

  7. 7

    He H, Ma E, Cui Y, et al. Polarized three-photon-pumped laser in a single MOF microcrystal. Nat Commun, 2016, 7: 11087

    Article  Google Scholar 

  8. 8

    He H, Ma E, Yu J, et al. Periodically aligned dye molecules integrated in a single MOF microcrystal exhibit single-mode linearly polarized lasing. Adv Opt Mater, 2017, 5: 1601040

    Article  Google Scholar 

  9. 9

    Medishetty R, Nalla V, Nemec L, et al. A new class of lasing materials: intrinsic stimulated emission from nonlinear optically active metal-organic frameworks. Adv Mater, 2017, 29: 1605637

    Article  Google Scholar 

  10. 10

    Wei Y, Dong H, Wei C, et al. Wavelength-tunable microlasers based on the encapsulation of organic dye in metal-organic frameworks. Adv Mater, 2016, 28: 7424–7429

    Article  Google Scholar 

  11. 11

    Yu J, Cui Y, Xu H, et al. Confinement of pyridinium hemicyanine dye within an anionic metal-organic framework for two-photonpumped lasing. Nat Commun, 2013, 4: 2719

    Google Scholar 

  12. 12

    Lu G, Farha OK, Zhang W, et al. Engineering ZIF-8 thin films for hybrid MOF-based devices. Adv Mater, 2012, 24: 3970–3974

    Article  Google Scholar 

  13. 13

    Wu Y, Li F, Zhu W, et al. Metal-organic frameworks with a threedimensional ordered macroporous structure: dynamic photonic materials. Angew Chem Int Ed, 2011, 50: 12518–12522

    Article  Google Scholar 

  14. 14

    Yanai N, Granick S. Directional self-assembly of a colloidal metalorganic framework. Angew Chem Int Ed, 2012, 51: 5638–5641

    Article  Google Scholar 

  15. 15

    Yanai N, Sindoro M, Yan J, et al. Electric field-induced assembly of monodisperse polyhedral metal–organic framework crystals. J Am Chem Soc, 2013, 135: 34–37

    Article  Google Scholar 

  16. 16

    Zhu Y, Ciston J, Zheng B, et al. Unravelling surface and interfacial structures of a metal–organic framework by transmission electron microscopy. Nat Mater, 2017, 16: 532–536

    Article  Google Scholar 

  17. 17

    Huang XC, Lin YY, Zhang JP, et al. Ligand-directed strategy for zeolite-type metal–organic frameworks: zinc(II) imidazolates with unusual zeolitic topologies. Angew Chem Int Ed, 2006, 45: 1557–1559

    Article  Google Scholar 

  18. 18

    Park KS, Ni Z, Côté AP, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci USA, 2006, 103: 10186–10191

    Article  Google Scholar 

  19. 19

    Cravillon J, Munzer S, Lohmeier SJ, et al. Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework. Chem Mater, 2009, 21: 1410–1412

    Article  Google Scholar 

  20. 20

    Gadipelli S, Travis W, Zhou W, et al. A thermally derived and optimized structure from ZIF-8 with giant enhancement in CO2 uptake. Energy Environ Sci, 2014, 7: 2232–2238

    Article  Google Scholar 

  21. 21

    Li P, Zeng HC. Immobilization of metal–organic framework nanocrystals for advanced design of supported nanocatalysts. ACS Appl Mater Interfaces, 2016, 8: 29551–29564

    Article  Google Scholar 

  22. 22

    Tsai CW, Langner EHG. The effect of synthesis temperature on the particle size of nano-ZIF-8. Microporous Mesoporous Mater, 2016, 221: 8–13

    Article  Google Scholar 

  23. 23

    Deria P, Mondloch JE, Karagiaridi O, et al. Beyond post-synthesis modification: evolution of metal–organic frameworks via building block replacement. Chem Soc Rev, 2014, 43: 5896–5912

    Article  Google Scholar 

  24. 24

    Morabito JV, Chou LY, Li Z, et al. Molecular encapsulation beyond the aperture size limit through dissociative linker exchange in metal–organic framework crystals. J Am Chem Soc, 2014, 136: 12540–12543

    Article  Google Scholar 

  25. 25

    Ye JW, Zhou HL, Liu SY, et al. Encapsulating pyrene in a metal–organic zeolite for optical sensing of molecular oxygen. Chem Mater, 2015, 27: 8255–8260

    Article  Google Scholar 

  26. 26

    Hagen N, Dereniak EL. Gaussian profile estimation in two dimensions. Appl Opt, 2008, 47: 6842

    Article  Google Scholar 

  27. 27

    Magde D, Wong R, Seybold PG. Fluorescence quantum yields and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents: improved absolute standards for quantum yields. PhotoChem PhotoBiol, 2007, 75: 327–334

    Article  Google Scholar 

  28. 28

    Medishetty R, Zaręba JK, Mayer D, et al. Nonlinear optical properties, upconversion and lasing in metal–organic frameworks. Chem Soc Rev, 2017, 46: 4976–5004

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (91622109, 21371181, and 21473260).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jie-Peng Zhang 张杰鹏.

Additional information

Jia-Wen Ye was born in 1990. He is a PhD candidate of inorganic chemistry at Sun Yat-Sen University (SYSU). His research focuses on optical properties of MOFs.

Jie-Peng Zhang obtained his BSc in 2000 and PhD in 2005 at SYSU, and was a JSPS postdoc at Kyoto University from 2005 to 2007. He joined SYSU as an associate professor in 2007, and became a professor in 2011. His research focuses on the chemistry and applications of MOFs.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ye, J., Zhou, X., Wang, Y. et al. Room-temperature sintered metal-organic framework nanocrystals: A new type of optical ceramics. Sci. China Mater. 61, 424–428 (2018). https://doi.org/10.1007/s40843-017-9184-1

Download citation