Skip to main content
Log in

Building towards a standardised approach to biocorrosion studies: a review of factors influencing Mg corrosion in vitro pertinent to in vivo corrosion

建立一个生物腐蚀研究的标准化方法: 与体内腐蚀相关的体外镁腐蚀影响因素综述

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

An Erratum to this article was published on 21 June 2018

This article has been updated

Abstract

The factors that influence magnesium (Mg) corrosion in vitro are systematically evaluated from a review of the relevant literature. We analysed the influence of the following factors on Mg biocorrosion in vitro: (i) inorganic ions, including both anions and cations, (ii) organic components such as proteins, amino acids and vitamins, and (iii) experimental parameters such as temperature, pH, buffer system and flow rate. Considerations and recommendations towards a standardised approach to in vitro biocorrosion testing are given. Several potential simulated body fluids are recommended. Implementing a standardised approach to experimental parameters has the potential to significantly reduce variability between in vitro biocorrosion tests, and to help build towards a methodology that accurately and consistently mimics in vivo corrosion. However, there are also knowledge gaps with regard to how best to characterise the in vivo environment and corrosion mechanism. The assumption that blood plasma is the correct bodily fluid upon which to base in vitro methodologies is examined, and factors that influence the corrosion mechanism in vivo, such as specimen encapsulation, bear consideration for further studies.

摘要

本文通过综述相关文献, 系统地评价了影响体外镁(Mg)腐蚀的因素. 分析了以下因素对镁体外生物腐蚀的影响: (i) 无机离子, 包括阴离子和阳离子, (ii) 有机成分, 如蛋白质、 氨基酸和维生素, (iii) 实验参数, 如温度、 pH值、 缓冲体系和流速. 通过这些归纳分析, 为建立一个体外生物腐蚀测试的标准化方法提供了思考和建议, 并推荐了几种有潜力的模拟体液. 实施实验参数的标准化方法具有显著减少体外生物腐蚀试验差异的潜能, 并有助于建立准确一致模拟体内腐蚀的方法. 然而, 在如何更好地表征体内环境和腐蚀机理上尚存在着知识上的空白. 本文审查了血浆是进行体外腐蚀测试的合适体液这一假设, 并提出在今后研究中需进一步考虑影响体内腐蚀机理的因素, 如样品封埋等.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 21 June 2018

    In the version of this Review originally published in the April, 2018 issue of Sci China Mater (2018, 61: 475–500, https:// doi.org/10.1007/s40843-017-9173-7), the authors found a small error in Table 1. The corrected version of Table 1 appears below.

References

  1. Zheng YF, Gu XN, Witte F. Biodegradable metals. Mater Sci Eng-R-Rep, 2014, 77: 1–34

    Article  Google Scholar 

  2. Staiger MP, Pietak AM, Huadmai J, et al. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials, 2006, 27: 1728–1734

    Article  CAS  Google Scholar 

  3. Waizy H, Seitz JM, Reifenrath J, et al. Biodegradable magnesium implants for orthopedic applications. J Mater Sci, 2013, 48: 39–50

    Article  CAS  Google Scholar 

  4. Erbel R, Di Mario C, Bartunek J, et al. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial. Lancet, 2007, 369: 1869–1875

    Article  CAS  Google Scholar 

  5. Seitz JM, Durisin M, Goldman J, et al. Recent advances in biodegradable metals for medical sutures: a critical review. Adv Healthcare Mater, 2015, 4: 1915–1936

    Article  CAS  Google Scholar 

  6. Eddy Jai Poinern G, Brundavanam S, Fawcett D. Biomedical magnesium alloys: a review of material properties, surface modifications and potential as a biodegradable orthopaedic implant. Am J Biomed Eng, 2012, 2: 218–240

    Article  Google Scholar 

  7. Chaya A, Yoshizawa S, Verdelis K, et al. In vivo study of magnesium plate and screw degradation and bone fracture healing. Acta Biomater, 2015, 18: 262–269

    Article  CAS  Google Scholar 

  8. Castellani C, Lindtner RA, Hausbrandt P, et al. Bone–implant interface strength and osseointegration: biodegradable magnesium alloy versus standard titanium control. Acta Biomater, 2011, 7: 432–440

    Article  CAS  Google Scholar 

  9. Zhang E, Xu L, Yu G, et al. In vivo evaluation of biodegradable magnesium alloy bone implant in the first 6 months implantation. J Biomed Mater Res, 2009, 90A: 882–893

    Article  CAS  Google Scholar 

  10. Erne P, Schier M, Resink TJ. The road to bioabsorbable stents: reaching clinical reality? Cardiovasc Intervent Radiol, 2006, 29: 11–16

    Article  Google Scholar 

  11. Moravej M, Mantovani D. Biodegradable metals for cardiovascular stent application: interests and new opportunities. Int J Mol Sci, 2011, 12: 4250–4270

    Article  CAS  Google Scholar 

  12. Arsiwala A, Desai P, Patravale V. Recent advances in micro/nanoscale biomedical implants. J Control Release, 2014, 189: 25–45

    Article  CAS  Google Scholar 

  13. Lee JW, Han HS, Han KJ, et al. Long-term clinical study and multiscale analysis of in vivo biodegradation mechanism of Mg alloy. Proc Natl Acad Sci USA, 2016, 113: 716–721

    Article  CAS  Google Scholar 

  14. Haude M, Erbel R, Erne P, et al. TCT-38 Three-year clinical data of the BIOSOLVE-I Study with the paclitaxel-eluting bioabsorbable magnesium scaffold (DREAMS) and multi-modality imaging analysis. J Am College Cardiology, 2013, 62: B13

    Article  Google Scholar 

  15. Haude M, Erbel R, Erne P, et al. TCT-625 long term clinical data of the BIOSOLVE-I study with the paclitaxel-eluting absorbable magnesium scaffold (DREAMS) and multi-modality imaging analysis. J Am College Cardiology, 2014, 64: B182–B183

    Article  Google Scholar 

  16. Seitz JM, Lucas A, Kirschner M. Magnesium-based compression screws: a novelty in the clinical use of implants. JOM, 2016, 68: 1177–1182

    Article  CAS  Google Scholar 

  17. Haude M, Ince H, Abizaid A, et al. Sustained safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de novo coronary lesions: 12-month clinical results and angiographic findings of the BIOSOLVE-II first-in-man trial. Eur Heart J, 2016, 37: 2701–2709

    Article  CAS  Google Scholar 

  18. Zhang Y, Xu J, Ruan YC, et al. Implant-derived magnesium induces local neuronal production of CGRP to improve bonefracture healing in rats. Nat Med, 2016, 22: 1160–1169

    Article  CAS  Google Scholar 

  19. Ohsawa I, Ishikawa M, Takahashi K, et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med, 2007, 13: 688–694

    Article  CAS  Google Scholar 

  20. Chen X. Magnesium-based implants: beyond fixators. J Orthopaedic Translation, 2017, 10: 1–4

    Article  Google Scholar 

  21. Atrens A, Liu M, Zainal Abidin NI. Corrosion mechanism applicable to biodegradable magnesium implants. Mater Sci Eng-B, 2011, 176: 1609–1636

    Article  CAS  Google Scholar 

  22. Song G, Atrens A. Understanding magnesium corrosion—a framework for improved alloy performance. Adv Eng Mater, 2003, 5: 837–858

    Article  CAS  Google Scholar 

  23. Witte F. The history of biodegradable magnesium implants: a review. Acta Biomater, 2010, 6: 1680–1692

    Article  CAS  Google Scholar 

  24. Zainal Abidin NI, Rolfe B, Owen H, et al. The in vivo and in vitro corrosion of high-purity magnesium and magnesium alloys WZ21 and AZ91. Corrosion Sci, 2013, 75: 354–366

    Article  CAS  Google Scholar 

  25. Hofstetter J, Becker M, Martinelli E, et al. High-strength low-alloy (HSLA) Mg–Zn–Ca Alloys with excellent biodegradation performance. JOM, 2014, 66: 566–572

    Article  CAS  Google Scholar 

  26. Zhao D, Witte F, Lu F, et al. Current status on clinical applications of magnesium-based orthopaedic implants: a review from clinical translational perspective. Biomaterials, 2017, 112: 287–302

    Article  CAS  Google Scholar 

  27. Bobe K, Willbold E, Morgenthal I, et al. In vitro and in vivo evaluation of biodegradable, open-porous scaffolds made of sintered magnesium W4 short fibres. Acta Biomater, 2013, 9: 8611–8623

    Article  CAS  Google Scholar 

  28. Gu XN, Xie XH, Li N, et al. In vitro and in vivo studies on a Mg–Sr binary alloy system developed as a new kind of biodegradable metal. Acta Biomater, 2012, 8: 2360–2374

    Article  CAS  Google Scholar 

  29. Hiromoto S, Inoue M, Taguchi T, et al. In vitro and in vivo biocompatibility and corrosion behaviour of a bioabsorbable magnesium alloy coated with octacalcium phosphate and hydroxyapatite. Acta Biomater, 2015, 11: 520–530

    Article  CAS  Google Scholar 

  30. Jang Y, Collins B, Sankar J, et al. Effect of biologically relevant ions on the corrosion products formed on alloy AZ31B: an improved understanding of magnesium corrosion. Acta Biomater, 2013, 9: 8761–8770

    Article  CAS  Google Scholar 

  31. Lin X, Tan L, Zhang Q, et al. The in vitro degradation process and biocompatibility of a ZK60 magnesium alloy with a forsteritecontaining micro-arc oxidation coating. Acta Biomater, 2013, 9: 8631–8642

    Article  CAS  Google Scholar 

  32. Martinez Sanchez AH, Luthringer BJC, Feyerabend F, et al. Mg and Mg alloys: how comparable are in vitro and in vivo corrosion rates? A review. Acta Biomater, 2015, 13: 16–31

    Article  CAS  Google Scholar 

  33. Wang HX, Guan SK, Wang X, et al. In vitro degradation and mechanical integrity of Mg–Zn–Ca alloy coated with Ca-deficient hydroxyapatite by the pulse electrodeposition process. Acta Biomater, 2010, 6: 1743–1748

    Article  CAS  Google Scholar 

  34. Zheng YF, Gu XN, Xi YL, et al. In vitro degradation and cytotoxicity of Mg/Ca composites produced by powder metallurgy. Acta Biomater, 2010, 6: 1783–1791

    Article  CAS  Google Scholar 

  35. Zhou WR, Zheng YF, Leeflang MA, et al. Mechanical property, biocorrosion and in vitro biocompatibility evaluations of Mg–Li–(Al)–(RE) alloys for future cardiovascular stent application. Acta Biomater, 2013, 9: 8488–8498

    Article  CAS  Google Scholar 

  36. Johnston S, Shi Z, Atrens A. The influence of pH on the corrosion rate of high-purity Mg, AZ91 and ZE41 in bicarbonate buffered Hanks’ solution. Corrosion Sci, 2015, 101: 182–192

    Article  CAS  Google Scholar 

  37. Johnston S, Shi Z, Dargusch MS, et al. Influence of surface condition on the corrosion of ultra-high-purity Mg alloy wire. Corrosion Sci, 2016, 108: 66–75

    Article  CAS  Google Scholar 

  38. Kirkland NT, Lespagnol J, Birbilis N, et al. A survey of biocorrosion rates of magnesium alloys. Corrosion Sci, 2010, 52: 287–291

    Article  CAS  Google Scholar 

  39. Johnston S, Shi Z, Hoe C, et al. The influence of two common sterilization techniques on the corrosion of Mg and its alloys for biomedical applications. J Biomed Mater Res, 2017, doi: 10.1002/jbm.b.34004

    Google Scholar 

  40. Li Y, Wen C, Mushahary D, et al. Mg–Zr–Sr alloys as biodegradable implant materials. Acta Biomater, 2012, 8: 3177–3188

    Article  CAS  Google Scholar 

  41. Staiger MP, Feyerabend F, Willumeit R, et al. Summary of the panel discussions at the 2nd Symposium on Biodegradable Metals, Maratea, Italy, 2010. Mater Sci Eng-B, 2010, 176: 1596–1599

    Google Scholar 

  42. Witte F, Fischer J, Nellesen J, et al. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials, 2006, 27: 1013–1018

    Article  CAS  Google Scholar 

  43. Marco I, Feyerabend F, Willumeit-Römer R, et al. Influence of testing environment on the degradation behavior of magnesium alloys for bioabsorbable implants. In: TMS 2015, 144th Annual Meeting & Exhibition, 2015, 497–506

    Google Scholar 

  44. Choudhary L, Singh Raman RK. Magnesium alloys as body implants: Fracture mechanism under dynamic and static loadings in a physiological environment. Acta Biomater, 2012, 8: 916–923

    Article  CAS  Google Scholar 

  45. El-Taib Heakal F, Shehata OS, Tantawy NS. Degradation behaviour of AZ80E magnesium alloy exposed to phosphate buffer saline medium. Corrosion Sci, 2014, 86: 285–294

    Article  CAS  Google Scholar 

  46. Carboneras M, García-Alonso MC, Escudero ML. Biodegradation kinetics of modified magnesium-based materials in cell culture medium. Corrosion Sci, 2011, 53: 1433–1439

    Article  CAS  Google Scholar 

  47. Vojtěch D, Kubásek J, Čapek J. Comparative mechanical and corrosion studies on magnesium, zinc and iron alloys as biodegradable metals. Mater Tehnol, 2015, 49: 877–882

    Article  CAS  Google Scholar 

  48. Walker J, Shadanbaz S, Kirkland NT, et al. Magnesium alloys: Predicting in vivo corrosion with in vitro immersion testing. J Biomed Mater Res, 2012, 100B: 1134–1141

    Article  CAS  Google Scholar 

  49. Witecka A, Bogucka A, Yamamoto A, et al. In vitro degradation of ZM21 magnesium alloy in simulated body fluids. Mater Sci Eng-C, 2016, 65: 59–69

    Article  CAS  Google Scholar 

  50. Marco I, Myrissa A, Martinelli E, et al. In vivo and in vitro degradation comparison of pure Mg, Mg-10Gd and Mg-2Ag: a short term study. eCM, 2017, 33: 90–104

    Article  CAS  Google Scholar 

  51. Taltavull C, Shi Z, Torres B, et al. Influence of the chloride ion concentration on the corrosion of high-purity Mg, ZE41 and AZ91 in buffered Hank’s solution. J Mater Sci-Mater Med, 2014, 25: 329–345

    Article  CAS  Google Scholar 

  52. Gu X, Zheng Y, Cheng Y, et al. In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials, 2009, 30: 484–498

    Article  CAS  Google Scholar 

  53. ASTM WK52640. New Guide for In-Vitro Degradation Testing of Absorbable Metals. ASTM International, 2016

    Google Scholar 

  54. Atrens A, Song GL, Liu M, et al. Review of recent developments in the field of magnesium corrosion. Adv Eng Mater, 2015, 17: 400–453

    Article  CAS  Google Scholar 

  55. Atrens A, Song GL, Cao F, et al. Advances in Mg corrosion and research suggestions. J Magnesium Alloys, 2013, 1: 177–200

    Article  CAS  Google Scholar 

  56. Song GL, Atrens A. Corrosion mechanisms of magnesium alloys. Adv Eng Mater, 1999, 1: 11–33

    Article  CAS  Google Scholar 

  57. Liu M, Schmutz P, Uggowitzer PJ, et al. The influence of yttrium (Y) on the corrosion of Mg–Y binary alloys. Corrosion Sci, 2010, 52: 3687–3701

    Article  CAS  Google Scholar 

  58. Kirkland NT, Birbilis N, Staiger MP. Assessing the corrosion of biodegradable magnesium implants: a critical review of current methodologies and their limitations. Acta Biomater, 2012, 8: 925–936

    Article  CAS  Google Scholar 

  59. Xin Y, Huo K, Tao H, et al. Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment. Acta Biomater, 2008, 4: 2008–2015

    Article  CAS  Google Scholar 

  60. Wang J, Giridharan V, Shanov V, et al. Flow-induced corrosion behavior of absorbable magnesium-based stents. Acta Biomater, 2014, 10: 5213–5223

    Article  CAS  Google Scholar 

  61. Krebs HA. Chemical composition of blood plasma and serum. Annu Rev Biochem, 1950, 19: 409–430

    Article  CAS  Google Scholar 

  62. Neville A. Chloride attack of reinforced concrete: an overview. Mater Struct, 1995, 28: 63–70

    Article  CAS  Google Scholar 

  63. Jones DA. Principles and Prevention of Corrosion. Upper Saddle River: Pearson, 1996

    Google Scholar 

  64. Jones DDG, Masterson HG. Effect of chloride concentration on the aqueous corrosion of a magnesium alloy. Nature, 1961, 191: 165–166

    Article  Google Scholar 

  65. Zhao MC, Liu M, Song GL, et al. Influence of pH and chloride ion concentration on the corrosion of Mg alloy ZE41. Corrosion Sci, 2008, 50: 3168–3178

    Article  CAS  Google Scholar 

  66. Mueller WD, Lucia Nascimento M, Lorenzo de Mele MF. Critical discussion of the results from different corrosion studies of Mg and Mg alloys for biomaterial applications. Acta Biomater, 2010, 6: 1749–1755

    Article  CAS  Google Scholar 

  67. Ma W, Liu Y, Wang W, et al. Effects of electrolyte component in simulated body fluid on the corrosion behavior and mechanical integrity of magnesium. Corrosion Sci, 2015, 98: 201–210

    Article  CAS  Google Scholar 

  68. Wasserman K, Whipp BJ, Koyl S, et al. Anaerobic threshold and respiratory gas exchange during exercise. J Appl Physiol, 1973, 35: 236–243

    Article  CAS  Google Scholar 

  69. Xin Y, Hu T, Chu PK. Degradation behaviour of pure magnesium in simulated body fluids with different concentrations of HCO3–. Corrosion Sci, 2011, 53: 1522–1528

    Article  CAS  Google Scholar 

  70. Xin Y, Chu PK. Influence of Tris in simulated body fluid on degradation behavior of pure magnesium. Mater Chem Phys, 2010, 124: 33–35

    Article  CAS  Google Scholar 

  71. Agha NA, Feyerabend F, Mihailova B, et al. Magnesium degradation influenced by buffering salts in concentrations typical of in vitro and in vivo models. Mater Sci Eng-C, 2016, 58: 817–825

    Article  CAS  Google Scholar 

  72. Kirkland NT, Waterman J, Birbilis N, et al. Buffer-regulated biocorrosion of pure magnesium. J Mater Sci-Mater Med, 2012, 23: 283–291

    Article  CAS  Google Scholar 

  73. Bryant JC. Earle’s balanced salt solution: Preparation of the saline. TCA manual/Tissue Culture Association, 1975, 1: 185–187

    Article  CAS  Google Scholar 

  74. Revie RW. Uhlig’s Corrosion Handbook (3rd Ed). Hoboken: John Wiley & Sons, 2011

    Book  Google Scholar 

  75. Abidin NIZ, Atrens AD, Martin D, et al. Corrosion of high purity Mg, Mg2Zn0.2Mn, ZE41 and AZ91 in Hank’s solution at 37°C. Corrosion Sci, 2011, 53: 3542–3556

    Article  CAS  Google Scholar 

  76. Yamamoto A, Hiromoto S. Effect of inorganic salts, amino acids and proteins on the degradation of pure magnesium in vitro. Mater Sci Eng-C, 2009, 29: 1559–1568

    Article  CAS  Google Scholar 

  77. Ning C, Zhou L, Zhu Y, et al. Influence of surrounding cations on the surface degradation of magnesium alloy implants under a compressive pressure. Langmuir, 2015, 31: 13561–13570

    Article  CAS  Google Scholar 

  78. Dill D, Costill DL. Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J Appl Physiol, 1974, 37: 247–248

    Article  CAS  Google Scholar 

  79. Adkins JN, Varnum SM, Auberry KJ, et al. Toward a human blood serum proteome. Mol Cell Proteomics, 2002, 1: 947–955

    Article  CAS  Google Scholar 

  80. Kragh-Hansen U. Molecular aspects of ligand binding to serum albumin. Pharmacol Rev, 1981, 33: 17–53

    CAS  Google Scholar 

  81. Liu CL, Wang YJ, Zeng RC, et al. In vitro corrosion degradation behaviour of Mg–Ca alloy in the presence of albumin. Corrosion Sci, 2010, 52: 3341–3347

    Article  CAS  Google Scholar 

  82. Gu XN, Zheng YF, Chen LJ. Influence of artificial biological fluid composition on the biocorrosion of potential orthopedic Mg–Ca, AZ31, AZ91 alloys. Biomed Mater, 2009, 4: 065011

    Article  CAS  Google Scholar 

  83. Liu C, Xin Y, Tian X, et al. Degradation susceptibility of surgical magnesium alloy in artificial biological fluid containing albumin. J Mater Res, 2007, 22: 1806–1814

    Article  CAS  Google Scholar 

  84. Zhang J, Kong N, Shi Y, et al. Influence of proteins and cells on in vitro corrosion of Mg–Nd–Zn–Zr alloy. Corrosion Sci, 2014, 85: 477–481

    Article  CAS  Google Scholar 

  85. Törne K, Örnberg A, Weissenrieder J. The influence of buffer system and biological fluids on the degradation of magnesium. J Biomed Mater Res, 2016, 105: 1490–1502

    Article  CAS  Google Scholar 

  86. Törne K, Larsson M, Norlin A, et al. Degradation of zinc in saline solutions, plasma, and whole blood. J Biomed Mater Res, 2016, 104: 1141–1151

    Article  CAS  Google Scholar 

  87. Gray-Munro JE, Strong M. A study on the interfacial chemistry of magnesium hydroxide surfaces in aqueous phosphate solutions: influence of Ca2+, Cl− and protein. J Colloid Interface Sci, 2013, 393: 421–428

    Article  CAS  Google Scholar 

  88. Johnson I, Jiang W, Liu H. The effects of serum proteins on magnesium alloy degradation in vitro. Sci Rep, 2017, 7: 14335

    Article  CAS  Google Scholar 

  89. Aldrich JE, Burtis CA, Ashwood ER, et al. Tietz Fundamentals of Clinical Chemistry. Philadelphia: WB Saunders, 1996

    Google Scholar 

  90. Zeng RC, Li XT, Li SQ, et al. In vitro degradation of pure Mg in response to glucose. Sci Rep, 2015, 5: 13026

    Article  CAS  Google Scholar 

  91. Cui LY, Li XT, Zeng RC, et al. In vitro corrosion of Mg–Ca alloy —The influence of glucose content. Front Mater Sci, 2017, 11: 284–295

    Article  Google Scholar 

  92. Wang Y, Cui LY, Zeng RC, et al. In vitro degradation of pure magnesium—the effects of glucose and/or amino acid. Materials, 2017, 10: 725

    Article  Google Scholar 

  93. Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Seminars Immunol, 2008, 20: 86–100

    Article  CAS  Google Scholar 

  94. Anderson JM. Inflammatory response to implants. ASAIO J, 1988, 34: 101–107

    Article  CAS  Google Scholar 

  95. Ovchinnikov DA. Macrophages in the embryo and beyond: much more than just giant phagocytes. genesis, 2008, 46: 447–462

    Article  Google Scholar 

  96. Mu Y, Kobayashi T, Sumita M, et al. Metal ion release from titanium with active oxygen species generated by rat macrophages in vitro. J Biomed Mater Res, 2000, 49: 238–243

    Article  CAS  Google Scholar 

  97. Zhang J, Hiromoto S, Yamazaki T, et al. Effect of macrophages on in vitro corrosion behavior of magnesium alloy. J Biomed Mater Res, 2016, 104: 2476–2487

    Article  CAS  Google Scholar 

  98. Geis-Gerstorfer J, Schille C, Schweizer E, et al. Blood triggered corrosion of magnesium alloys. Mater Sci Eng-B, 2011, 176: 1761–1766

    Article  CAS  Google Scholar 

  99. Lock JY, Wyatt E, Upadhyayula S, et al. Degradation and antibacterial properties of magnesium alloys in artificial urine for potential resorbable ureteral stent applications. J Biomed Mater Res, 2014, 102: 781–792

    Article  CAS  Google Scholar 

  100. Liu Y, Zheng S, Li N, et al. In vivo response of AZ31 alloy as biliary stents: a 6 months evaluation in rabbits. Sci Rep, 2017, 7: 40184

    Article  CAS  Google Scholar 

  101. White-Ziegler CA, Malhowski AJ, Young S. Human body temperature (37°C) increases the expression of iron, carbohydrate, and amino acid utilization genes in Escherichia coli K-12. J Bacteriology, 2007, 189: 5429–5440

    Article  CAS  Google Scholar 

  102. Kirkland NT. Magnesium biomaterials: past, present and future. Corrosion Eng Sci Tech, 2012, 47: 322–328

    Article  CAS  Google Scholar 

  103. Kirkland NT, Travis N, Birbilis N. Magnesium Biomaterials: Design, Testing, and Best Practice. New York: Springer, 2014

    Book  Google Scholar 

  104. Yang L, Zhang E. Biocorrosion behavior of magnesium alloy in different simulated fluids for biomedical application. Mater Sci Eng-C, 2009, 29: 1691–1696

    Article  CAS  Google Scholar 

  105. Xin Y, Hu T, Chu PK. Influence of test solutions on in vitro studies of biomedical magnesium alloys. J Electrochem Soc, 2010, 157: C238

    Article  CAS  Google Scholar 

  106. Ng WF, Chiu KY, Cheng FT. Effect of pH on the in vitro corrosion rate of magnesium degradable implant material. Mater Sci Eng-C, 2010, 30: 898–903

    Article  CAS  Google Scholar 

  107. Woodrow P. Arterial blood gas analysis. Nursing Standard, 2004, 18: 45–52

    Article  Google Scholar 

  108. Greenbaum J, Nirmalan M. Acid–base balance: the traditional approach. Curr Anaesthesia Critical Care, 2005, 16: 137–142

    Article  Google Scholar 

  109. Schinhammer M, Hofstetter J, Wegmann C, et al. On the immersion testing of degradable implant materials in simulated body fluid: active pH regulation using CO2. Adv Eng Mater, 2013, 15: 434–441

    Article  CAS  Google Scholar 

  110. Xin Y, Hu T, Chu PK. In vitro studies of biomedical magnesium alloys in a simulated physiological environment: a review. Acta Biomater, 2011, 7: 1452–1459

    Article  CAS  Google Scholar 

  111. Hofstetter J, Martinelli E, Weinberg AM, et al. Assessing the degradation performance of ultrahigh-purity magnesium in vitro and in vivo. Corrosion Sci, 2015, 91: 29–36

    Article  CAS  Google Scholar 

  112. Sugawara M, Maeda N. Hemorheology and Blood Flow. Tokyo: Corona Publishing Co., 2003

    Google Scholar 

  113. Guyton AC. The body fluids and kidneys. In: Guyton AC, Hall JE (eds.). Textbook of medical physiology. Philadelphia: WB Saunders Company, 2006: 339

  114. Kanai I. Kanai’s manual of clinical laboratory medicine. Tokyo: Kanehara, 1998, 274–275

    Google Scholar 

  115. Soya Y, Yoshihara S, Ohmura Y, et al. Corrosion behavior of engineering materials in flow field. Adv Mater Res, 2014, 922: 722–727

    Article  CAS  Google Scholar 

  116. Doriot PA, Dorsaz PA, Dorsaz L, et al. In-vivo measurements of wall shear stress in human coronary arteries. Coronary Artery Dis, 2000, 11: 495–502

    Article  CAS  Google Scholar 

  117. Md.Saad AP, Jasmawati N, Harun MN, et al. Dynamic degradation of porous magnesium under a simulated environment of human cancellous bone. Corrosion Sci, 2016, 112: 495–506

    CAS  Google Scholar 

  118. Muschler GF, Raut VP, Patterson TE, et al. The design and use of animal models for translational research in bone tissue engineering and regenerative medicine. Tissue Eng Part B-Rev, 2010, 16: 123–145

    Article  Google Scholar 

  119. Pearce A, Richards R, Milz S, et al. Animal models for implant biomaterial research in bone: a review. eCM, 2007, 13: 1–10

    Article  CAS  Google Scholar 

  120. Zhang S, Zhang X, Zhao C, et al. Research on an Mg–Zn alloy as a degradable biomaterial. Acta Biomater, 2010, 6: 626–640

    Article  CAS  Google Scholar 

  121. Cheng P, Zhao C, Han P, et al. Site-dependent osseointegration of biodegradable high-purity magnesium for orthopedic implants in femoral shaft and femoral condyle of New Zealand rabbits. J Mater Sci Tech, 2016, 32: 883–888

    Article  Google Scholar 

  122. Willbold E, Kaya AA, Kaya RA, et al. Corrosion of magnesium alloy AZ31 screws is dependent on the implantation site. Mater Sci Eng-B, 2011, 176: 1835–1840

    Article  CAS  Google Scholar 

  123. Schaller B, Saulacic N, Beck S, et al. In vivo degradation of a new concept of magnesium-based rivet-screws in the minipig mandibular bone. Mater Sci Eng-C, 2016, 69: 247–254

    Article  CAS  Google Scholar 

  124. Bowen PK, Drelich J, Goldman J. A new in vitro–in vivo correlation for bioabsorbable magnesium stents from mechanical behavior. Mater Sci Eng-C, 2013, 33: 5064–5070

    Article  CAS  Google Scholar 

  125. Bowen PK, Drelich J, Goldman J. Magnesium in the murine artery: probing the products of corrosion. Acta Biomater, 2014, 10: 1475–1483

    Article  CAS  Google Scholar 

  126. Bowen PK, Drelich A, Drelich J, et al. Rates of in vivo (arterial) and in vitro biocorrosion for pure magnesium. J Biomed Mater Res, 2015, 103: 341–349

    Article  CAS  Google Scholar 

  127. Heublein B. Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology? Heart, 2003, 89: 651–656

    Article  CAS  Google Scholar 

  128. Willbold E, Kalla K, Bartsch I, et al. Biocompatibility of rapidly solidified magnesium alloy RS66 as a temporary biodegradable metal. Acta Biomater, 2013, 9: 8509–8517

    Article  CAS  Google Scholar 

  129. Yang W, Zhang Y, Yang J, et al. Potential antiosteoporosis effect of biodegradable magnesium implanted in STZ-induced diabetic rats. J Biomed Mater Res, 2011, 99A: 386–394

    Article  CAS  Google Scholar 

  130. Griebel AJ, Schaffer JE, Hopkins TM, et al. An in vitro and in vivo characterization of fine WE43B magnesium wire with varied thermomechanical processing conditions. J Biomed Mater Res, 2017, doi: 10.1002/jbm.b.34008

    Google Scholar 

  131. Erdmann N, Bondarenko A, Hewicker-Trautwein M, et al. Evaluation of the soft tissue biocompatibility of MgCa0.8 and surgical steel 316L in vivo: a comparative study in rabbits. Biomed Eng Online, 2010, 9: 63

    Article  Google Scholar 

  132. Myrissa A, Martinelli E, Szakács G, et al. In vivo degradation of binary magnesium alloys—a long-term study. BioNanoMaterials, 2016, 17: 121–130

    Article  Google Scholar 

  133. LeGeros RZ, Craig RG. Strategies to affect bone remodeling: osteointegration. J Bone Miner Res, 2009, 8: S583–S596

    Article  Google Scholar 

  134. Mao L, Shen L, Chen J, et al. A promising biodegradable magnesium alloy suitable for clinical vascular stent application. Sci Rep, 2017, 7: 46343

    Article  CAS  Google Scholar 

  135. Bowen PK, Gelbaugh JA, Mercier PJ, et al. Tensile testing as a novel method for quantitatively evaluating bioabsorbable material degradation. J Biomed Mater Res, 2012, 100B: 2101–2113

    Article  CAS  Google Scholar 

  136. Senay L, Mitchell G, McClain E, et al. A subcutaneous capsule for long-term studies. Am J Physiol-Renal Physiol, 1981, 241: F687–F691

    Article  CAS  Google Scholar 

  137. ISO 10993–6:2007. Biological evaluation of medical devices—Part 6: Tests for local effects after implantation. International Organization for Standardization, 2007

  138. ASTM F763-04. Standard Practice for Short-Term Screening of Implant Materials. ASTM International, 2016

    Google Scholar 

  139. ASTM F1408-97. Standard Practice for Subcutaneous Screening Test for Implant Materials. ASTM International, 2013

    Google Scholar 

  140. Liu Y, Zheng Y, Hayes B. Degradable, absorbable or resorbable— what is the best grammatical modifier for an implant that is eventually absorbed by the body? Sci China Mater, 2017, 60: 377–391

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Australian Federal Government through an Australian Government Research Training Program Scholarship. We would also like to thank Dr. Zhiming Shi for his continued support and guidance. The authors would like to acknowledge the support of the Australian Research Council (ARC) (DP170102557 “Biodegradable magnesium alloy scaffolds for bone tissue engineering”). Finally, the Authors (in particular Dargusch M) would also like to gratefully acknowledge the support of the ARC Research Hub for Advanced Manufacturing of Medical Devices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrej Atrens.

Additional information

Sean Johnston is a PhD student at the University of Queensland. His research interests are metallic biomaterials and biodegradable metals, with a specific focus on the corrosion of magnesium alloys in a medical environment.

Matthew Dargusch is a Professor of materials engineering at the University of Queensland. His research interests are in advanced manufacturing and the design and development of medical devices. He is the Director of the ARC Industrial Transformation Research Hub for Advanced Manufacturing of Medical Devices based at The University of Queensland.

Andrej Atrens is Professor of Materials Engineering at The University of Queensland. He received his PhD from the University of Adelaide in 1976 and his Doctor of Engineering from the University of Queensland in 1997. Prof. Atrens is a leading expert in the field of corrosion engineering. His research interests include Mg corrosion, biocorrosion of Mg for biodegradable medical implants, and hydrogen embrittlement of advanced high strength steels.

Electronic supplementary material

40843_2017_9173_MOESM1_ESM.pdf

Building towards a standardised approach to biocorrosion studies: a review of factors influencing Mg corrosion in vitro pertinent to in vivo corrosion

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnston, S., Dargusch, M. & Atrens, A. Building towards a standardised approach to biocorrosion studies: a review of factors influencing Mg corrosion in vitro pertinent to in vivo corrosion. Sci. China Mater. 61, 475–500 (2018). https://doi.org/10.1007/s40843-017-9173-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-017-9173-7

Keywords

Navigation