Science China Materials

, Volume 61, Issue 6, pp 771–805 | Cite as

Recent progress on advanced design for photoelectrochemical reduction of CO2 to fuels

Reviews

Abstract

The energy crisis and global warming become severe issues. Solar-driven CO2 reduction provides a promising route to confront the predicaments, which has received much attention. The photoelectrochemical (PEC) process, which can integrate the merits of both photocatalysis and electrocatalysis, boosts splendid talent for CO2 reduction with high efficiency and excellent selectivity. Recent several decades have witnessed the overwhelming development of PEC CO2 reduction. In this review, we attempt to systematically summarize the recent advanced design for PEC CO2 reduction. On account of basic principles and evaluation parameters, we firstly highlight the subtle construction for photocathodes to enhance the efficiency and selectivity of CO2 reduction, which includes the strategies for improving light utilization, supplying catalytic active sites and steering reaction pathway. Furthermore, diversiform novel PEC setups are also outlined. These exploited setups endow a bright window to surmount the intrinsic disadvantages of photocathode, showing promising potentials for future applications. Finally, we underline the challenges and key factors for the further development of PEC CO2 reduction that would enable more efficient designs for setups and deepen systematic understanding for mechanisms.

Keywords

photoelectrocatalysis CO2 reduction light utilization semiconductor selectivity 

用于光电催化还原CO2为燃料的设计进展

摘要

当今能源危机以及全球温室效应日益严重. 以太阳能驱动的CO2还原为解决这些问题提供了一个全新的绿色途径, 并受到研究者的广泛关注. 光电催化过程能够整合光催化和电催化两者的优势, 从而实现对CO2还原更高的效率和更理想的选择性. 近几十年来, 光电催化CO2还原蓬勃发展, 已经取得了一些令人瞩目的成果. 本文总结了近年来基于光电催化CO2还原的设计工作. 在讨论CO2还原的基本理论和评价体系的基础上, 我们首先介绍了光阴极的调控手段, 包括提高光利用效率、 开拓催化活性位点、 调控反应过程等等. 此外, 我们还讨论了最近发展的用于CO2还原的新型光电催化装置. 我们最后总结了光电催化CO2还原目前还面临的问题和此领域今后研究的重点.

Notes

Acknowledgements

This work was financially supported in part by the National Key R&D Program of China (2017YFA0207301), the National Basic Research Program of China (973 Program, 2014CB848900), the National Natural Science Foundation of China (21471141 and U1532135), the CAS Key Research Program of Frontier Sciences (QYZDB-SSW-SLH018), the CAS Interdisciplinary Innovation Team, the Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology (2016FXCX003), the Recruitment Program of Global Experts, the CAS Hundred Talent Program, Anhui Provincial Natural Science Foundation (1708085QB26), China Postdoctoral Science Foundation (BH2060000034), and the Fundamental Research Funds for the Central Universities (WK2060190064).

References

  1. 1.
    Schultz DM, Yoon TP. Solar synthesis: prospects in visible light photocatalysis. Science, 2014, 343: 1239176–1239176Google Scholar
  2. 2.
    Yoon TP, Ischay MA, Du J. Visible light photocatalysis as a greener approach to photochemical synthesis. Nat Chem, 2010, 2: 527–532Google Scholar
  3. 3.
    Brongersma ML, Halas NJ, Nordlander P. Plasmon-induced hot carrier science and technology. Nat Nanotechnol, 2015, 10: 25–34Google Scholar
  4. 4.
    Bai S, Jiang J, Zhang Q, et al. Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations. Chem Soc Rev, 2015, 44: 2893–2939Google Scholar
  5. 5.
    Gao C, Wang J, Xu H, et al. Coordination chemistry in the design of heterogeneous photocatalysts. Chem Soc Rev, 2017, 46: 2799–2823Google Scholar
  6. 6.
    Kubacka A, Fernández–García M, Colón G. Advanced nanoarchitectures for solar photocatalytic applications. Chem Rev, 2012, 112: 1555–1614Google Scholar
  7. 7.
    Grätzel M. Photoelectrochemical cells. Nature, 2001, 414: 338–344Google Scholar
  8. 8.
    Walter MG, Warren EL, McKone JR, et al. Solar water splitting cells. Chem Rev, 2010, 110: 6446–6473Google Scholar
  9. 9.
    Kang D, Kim TW, Kubota SR, et al. Electrochemical synthesis of photoelectrodes and catalysts for use in solar water splitting. Chem Rev, 2015, 115: 12839–12887Google Scholar
  10. 10.
    Chen X, Shen S, Guo L, et al. Semiconductor-based photocatalytic hydrogen generation. Chem Rev, 2010, 110: 6503–6570Google Scholar
  11. 11.
    Ran J, Zhang J, Yu J, et al. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem Soc Rev, 2014, 43: 7787–7812Google Scholar
  12. 12.
    Tachibana Y, Vayssieres L, Durrant JR. Artificial photosynthesis for solar water-splitting. Nat Photonics, 2012, 6: 511–518Google Scholar
  13. 13.
    White JL, Baruch MF, Pander III JE, et al. Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes. Chem Rev, 2015, 115: 12888–12935Google Scholar
  14. 14.
    Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew Chem Int Ed, 2013, 52: 7372–7408Google Scholar
  15. 15.
    Chang X, Wang T, Gong J. CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ Sci, 2016, 9: 2177–2196Google Scholar
  16. 16.
    Tu W, Zhou Y, Zou Z. Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: state-of-the-art accomplishment, challenges, and prospects. Adv Mater, 2014, 26: 4607–4626Google Scholar
  17. 17.
    Li X, Wen J, Low J, et al. Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel. Sci China Mater, 2014, 57: 70–100Google Scholar
  18. 18.
    Inoue T, Fujishima A, Konishi S, et al. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature, 1979, 277: 637–638Google Scholar
  19. 19.
    Oh Y, Hu X. Organic molecules as mediators and catalysts for photocatalytic and electrocatalytic CO2 reduction. Chem Soc Rev, 2013, 42: 2253–2261Google Scholar
  20. 20.
    Roger I, Shipman MA, Symes MD. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat Rev Chem, 2017, 1: 0003Google Scholar
  21. 21.
    Paracchino A, Laporte V, Sivula K, et al. Highly active oxide photocathode for photoelectrochemical water reduction. Nat Mater, 2011, 10: 456–461Google Scholar
  22. 22.
    Ji L, McDaniel M D, Wang S, et al. A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst. Nat Nanotechnol, 2014, 10: 84–90Google Scholar
  23. 23.
    Kim TW, Choi KS. Nanoporous BiVO4 photoanodes with duallayer oxygen evolution catalysts for solar water splitting. Science, 2014, 343: 990–994Google Scholar
  24. 24.
    Hu S, Shaner MR, Beardslee JA, et al. Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science, 2014, 344: 1005–1009Google Scholar
  25. 25.
    Hisatomi T, Kubota J, Domen K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem Soc Rev, 2014, 43: 7520–7535Google Scholar
  26. 26.
    Halmann M. Photoelectrochemical reduction of aqueous carbon dioxide on p–type gallium phosphide in liquid junction solar cells. Nature, 1978, 275: 115–116Google Scholar
  27. 27.
    Kumar B, Llorente M, Froehlich J, et al. Photochemical and Photoelectrochemical Reduction of CO2. Annu Rev Phys Chem, 2012, 63: 541–569Google Scholar
  28. 28.
    Xie S, Zhang Q, Liu G, et al. Photocatalytic and photoelectrocatalytic reduction of CO2 using heterogeneous catalysts with controlled nanostructures. Chem Commun, 2016, 52: 35–59Google Scholar
  29. 29.
    Choi SK, Kang U, Lee S, et al. Sn-coupled p-Si nanowire arrays for solar formate production from CO2. Adv Energy Mater, 2014, 4: 1301614Google Scholar
  30. 30.
    La Tempa TJ, Rani S, Bao N, et al. Generation of fuel from CO2 saturated liquids using a p-Si nanowiren-TiO2 nanotube array photoelectrochemical cell. Nanoscale, 2012, 4: 2245–2250Google Scholar
  31. 31.
    Chang X, Wang T, Zhang P, et al. Stable aqueous photoelectrochemical CO2 reduction by a Cu2O dark cathode with improved selectivity for carbonaceous products. Angew Chem Int Ed, 2016, 55: 8840–8845Google Scholar
  32. 32.
    Bachmeier A, Hall S, Ragsdale SW, et al. Selective visible-lightdriven CO2 Reduction on a p-type dye-sensitized NiO photocathode. J Am Chem Soc, 2014, 136: 13518–13521Google Scholar
  33. 33.
    Schreier M, Luo J, Gao P, et al. Covalent immobilization of a molecular catalyst on Cu2O photocathodes for CO2 reduction. J Am Chem Soc, 2016, 138: 1938–1946Google Scholar
  34. 34.
    Arai T, Tajima S, Sato S, et al. Selective CO2 conversion to formate in water using a CZTS photocathode modified with a ruthenium complex polymer. Chem Commun, 2011, 47: 12664–12666Google Scholar
  35. 35.
    Yuan J, Hao C. Solar-driven photoelectrochemical reduction of carbon dioxide to methanol at CuInS2 thin film photocathode. Sol Energy Mater Sol Cells, 2013, 108: 170–174Google Scholar
  36. 36.
    Jang YJ, Jang JW, Lee J, et al. Selective CO production by Au coupled ZnTe/ZnO in the photoelectrochemical CO2 reduction system. Energy Environ Sci, 2015, 8: 3597–3604Google Scholar
  37. 37.
    Jang JW, Cho S, Magesh G, et al. Aqueous-solution route to zinc telluride films for application to CO2 reduction. Angew Chem Int Ed, 2014, 53: 5852–5857Google Scholar
  38. 38.
    Zeng G, Qiu J, Li Z, et al. CO2 reduction to methanol on TiO2-passivated GaP photocatalysts. ACS Catal, 2014, 4: 3512–3516Google Scholar
  39. 39.
    Lessio M, Carter E A. What is the role of pyridinium in pyridinecatalyzed CO2 reduction on p-GaP photocathodes? J Am Chem Soc, 2015, 137: 13248–13251Google Scholar
  40. 40.
    Kang U, Choi SK, Ham DJ, et al. Photosynthesis of formate from CO2 and water at 1% energy efficiency via copper iron oxide catalysis. Energy Environ Sci, 2015, 8: 2638–2643Google Scholar
  41. 41.
    Sagara N, Kamimura S, Tsubota T, et al. Photoelectrochemical CO2 reduction by a p-type boron-doped g-C3N4 electrode under visible light. Appl Catal B-Environ, 2016, 192: 193–198Google Scholar
  42. 42.
    Yang C, Yu X, Heiβler S, et al. Surface faceting and reconstruction of ceria nanoparticles. Angew Chem Int Ed, 2017, 56: 375–379Google Scholar
  43. 43.
    Zhang Y, Luc W, Hutchings GS, et al. Photoelectrochemical carbon dioxide reduction using a nanoporous Ag cathode. ACS Appl Mater Interfaces, 2016, 8: 24652–24658Google Scholar
  44. 44.
    Magesh G, Kim ES, Kang HJ, et al. A versatile photoanode-driven photoelectrochemical system for conversion of CO2 to fuels with high faradaic efficiencies at low bias potentials. J Mater Chem A, 2014, 2: 2044–2049Google Scholar
  45. 45.
    Sato S, Arai T, Morikawa T, et al. Selective CO2 conversion to formate conjugated with H2O oxidation utilizing semiconductor/ complex hybrid photocatalysts. J Am Chem Soc, 2011, 133: 15240–15243Google Scholar
  46. 46.
    Sahara G, Kumagai H, Maeda K, et al. Photoelectrochemical reduction of CO2 coupled to water oxidation using a photocathode with a Ru(II)-Re(I) complex photocatalyst and a CoOx/TaON photoanode. J Am Chem Soc, 2016, 138: 14152–14158Google Scholar
  47. 47.
    Schreier M, Curvat L, Giordano F, et al. Efficient photosynthesis of carbon monoxide from CO2 using perovskite photovoltaics. Nat Commun, 2015, 6: 7326Google Scholar
  48. 48.
    Schreier M, Héroguel F, Steier L, et al. Solar conversion of CO2 to CO using earth-abundant electrocatalysts prepared by atomic layer modification of CuO. Nat Energ, 2017, 2: 17087Google Scholar
  49. 49.
    Bolton J R. Solar Fuels. Science, 1978, 202: 705–711Google Scholar
  50. 50.
    Qiao J, Liu Y, Hong F, et al. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem Soc Rev, 2014, 43: 631–675Google Scholar
  51. 51.
    Hong J, Zhang W, Ren J, et al. Photocatalytic reduction of CO2: a brief review on product analysis and systematic methods. Anal Methods, 2013, 5: 1086Google Scholar
  52. 52.
    Surdhar PS, Mezyk SP, Armstrong DA. Reduction potential of the carboxyl radical anion in aqueous solutions. J Phys Chem, 1989, 93: 3360–3363Google Scholar
  53. 53.
    Huynh MHV, Meyer TJ. Proton-coupled electron transfer. Chem Rev, 2007, 107: 5004–5064Google Scholar
  54. 54.
    Costentin C, Robert M, Savéant JM. Catalysis of the electrochemical reduction of carbon dioxide. Chem Soc Rev, 2013, 42: 2423–2436Google Scholar
  55. 55.
    Ji Y, Luo Y. Theoretical study on the mechanism of photoreduction of CO2 to CH4 on the anatase TiO2 (101) surface. ACS Catal, 2016, 6: 2018–2025Google Scholar
  56. 56.
    Neatu S, Maciá–Agulló JA, Concepción P, et al. Gold-copper nanoalloys supported on TiO2 as photocatalysts for CO2 reduction by water. J Am Chem Soc, 2014, 136: 15969–15976Google Scholar
  57. 57.
    Kang Q, Wang T, Li P, et al. Photocatalytic reduction of carbon dioxide by hydrous hydrazine over Au-Cu alloy nanoparticles supported on SrTiO3/TiO2 coaxial nanotube arrays. Angew Chem Int Ed, 2015, 54: 841–845Google Scholar
  58. 58.
    Gao C, Meng Q, Zhao K, et al. Co3O4 hexagonal platelets with controllable facets enabling highly efficient visible-light photocatalytic reduction of CO2. Adv Mater, 2016, 28: 6485–6490Google Scholar
  59. 59.
    Shown I, Hsu HC, Chang YC, et al. Highly efficient visible light photocatalytic reduction of CO2 to hydrocarbon fuels by Cunanoparticle decorated graphene oxide. Nano Lett, 2014, 14: 6097–6103Google Scholar
  60. 60.
    Hori Y, Kikuchi K, Murata A, et al. Production of methane and ethylene in electrochemical reduction of carbon dioxide at copper electrode in aqueous hydrogencarbonate solution. Chem Lett, 1986, 15: 897–898Google Scholar
  61. 61.
    Cook RL. Photoelectrochemical carbon dioxide reduction to hydrocarbons at ambient temperature and pressure. J Electrochem Soc, 1988, 135: 3069–3070Google Scholar
  62. 62.
    Hirota K, Tryk DA, Yamamoto T, et al. Photoelectrochemical reduction of CO2 in a high-pressure CO2 + methanol medium at p-type semiconductor electrodes. J Phys Chem B, 1998, 102: 9834–9843Google Scholar
  63. 63.
    Hirota K. Photoelectrochemical reduction of CO2 at high current densities at p-InP electrodes. J Electrochem Soc, 1998, 145: L82Google Scholar
  64. 64.
    Mikkelsen M, Jørgensen M, Krebs FC. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ Sci, 2010, 3: 43–81Google Scholar
  65. 65.
    de Brito JF, Araujo AR, Rajeshwar K, et al. Photoelectrochemical reduction of CO2 on Cu/Cu2O films: product distribution and pH effects. Chem Eng J, 2015, 264: 302–309Google Scholar
  66. 66.
    Zou X, Zhang Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev, 2015, 44: 5148–5180Google Scholar
  67. 67.
    Hara K. High efficiency electrochemical reduction of carbon dioxide under high pressure on a gas diffusion electrode containing Pt catalysts. J Electrochem Soc, 1995, 142: L57Google Scholar
  68. 68.
    Miller MB, Chen DL, Luebke DR, et al. Critical assessment of CO2 solubility in volatile solvents at 298.15 K. J Chem Eng Data, 2011, 56: 1565–1572Google Scholar
  69. 69.
    Kaneco S, Katsumata H, Suzuki T, et al. Photoelectrocatalytic reduction of CO2 in LiOH/methanol at metal-modified p-InP electrodes. Appl Catal B-Environ, 2006, 64: 139–145Google Scholar
  70. 70.
    Kou Y, Nakatani S, Sunagawa G, et al. Visible light-induced reduction of carbon dioxide sensitized by a porphyrin-rhenium dyad metal complex on p-type semiconducting NiO as the reduction terminal end of an artificial photosynthetic system. J Catal, 2014, 310: 57–66Google Scholar
  71. 71.
    Medina–Ramos J, Pupillo RC, Keane TP, et al. Efficient conversion of CO2 to CO using tin and other inexpensive and easily prepared post-transition metal catalysts. J Am Chem Soc, 2015, 137: 5021–5027Google Scholar
  72. 72.
    Lin J, Ding Z, Hou Y, et al. Ionic liquid co-catalyzed artificial photosynthesis of CO. Sci Rep, 2013, 3: 1056Google Scholar
  73. 73.
    Rosen BA, Salehi–Khojin A, Thorson MR, et al. Ionic liquidmediated selective conversion of CO2 to CO at low overpotentials. Science, 2011, 334: 643–644Google Scholar
  74. 74.
    Lu W, Jia B, Cui B, et al. Efficient photoelectrochemical reduction of CO2 to formic acid with functionalized ionic liquid as absorbent and electrolyte. Angew Chem Int Ed, 2017, 56: 11851–11854Google Scholar
  75. 75.
    Choi CH, Chung J, Woo SI. Photoelectrochemical production of formic acid and methanol from carbon dioxide on metal-decorated CuO/Cu2O-layered thin films under visible light irradiation. Appl Catal B, 2014, 158-159: 217–223Google Scholar
  76. 76.
    Shen Q, Chen Z, Huang X, et al. High-yield and selective photoelectrocatalytic reduction of CO2 to formate by metallic copper decorated Co3O4 nanotube arrays. Environ Sci Technol, 2015, 49: 5828–5835Google Scholar
  77. 77.
    Tong H, Ouyang S, Bi Y, et al. Nano-photocatalytic materials: possibilities and challenges. Adv Mater, 2012, 24: 229–251Google Scholar
  78. 78.
    Liu S, Tang ZR, Sun Y, et al. One-dimension-based spatially ordered architectures for solar energy conversion. Chem Soc Rev, 2015, 44: 5053–5075Google Scholar
  79. 79.
    Dasgupta NP, Sun J, Liu C, et al. 25th anniversary article: semiconductor nanowires-synthesis, characterization, and applications. Adv Mater, 2014, 26: 2137–2184Google Scholar
  80. 80.
    Xie JL, Guo CX, Li CM. Construction of one-dimensional nanostructures on graphene for efficient energy conversion and storage. Energy Environ Sci, 2014, 7: 2559–2579Google Scholar
  81. 81.
    Hochbaum A I, Yang P. Semiconductor nanowires for energy conversion. Chem Rev, 2010, 110: 527–546Google Scholar
  82. 82.
    Ghadimkhani G, de Tacconi NR, Chanmanee W, et al. Efficient solar photoelectrosynthesis of methanol from carbon dioxide using hybrid CuO-Cu2O semiconductor nanorod arrays. Chem Commun, 2013, 49: 1297–1299Google Scholar
  83. 83.
    Rajeshwar K, de Tacconi NR, Ghadimkhani G, et al. Tailoring copper oxide semiconductor nanorod arrays for photoelectrochemical reduction of carbon dioxide to methanol. Chem-PhysChem, 2013, 14: 2251–2259Google Scholar
  84. 84.
    Sun K, Shen S, Liang Y, et al. Enabling silicon for solar-fuel production. Chem Rev, 2014, 114: 8662–8719Google Scholar
  85. 85.
    Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293: 269–271Google Scholar
  86. 86.
    Shen S, Zhao L, Zhou Z, et al. Enhanced photocatalytic hydrogen evolution over Cu-doped ZnIn2S4 under visible light irradiation. J Phys Chem C, 2008, 112: 16148–16155Google Scholar
  87. 87.
    Liu B, Chen HM, Liu C, et al. Large-scale synthesis of transitionmetal-doped TiO2 nanowires with controllable overpotential. J Am Chem Soc, 2013, 135: 9995–9998Google Scholar
  88. 88.
    Nasution H, Purnama E, Kosela S, et al. Photocatalytic reduction of CO on copper-doped titania catalysts prepared by improvedimpregnation method. Catal Commun, 2005, 6: 313–319Google Scholar
  89. 89.
    Wang G, Yang Y, Han D, et al. Oxygen defective metal oxides for energy conversion and storage. Nano Today, 2017, 13: 23–39Google Scholar
  90. 90.
    Chen X, Liu L, Huang F. Black titanium dioxide (TiO2) nanomaterials. Chem Soc Rev, 2015, 44: 1861–1885Google Scholar
  91. 91.
    Han T, Chen Y, Tian G, et al. Hydrogenated TiO2/SrTiO3 porous microspheres with tunable band structure for solar-light photocatalytic H2 and O2 evolution. Sci China Mater, 2016, 59: 1003–1016Google Scholar
  92. 92.
    Zuo F, Bozhilov K, Dillon RJ, et al. Active facets on titanium(III)-doped TiO2: an effective strategy to improve the visible-light photocatalytic activity. Angew Chem Int Ed, 2012, 51: 6223–6226Google Scholar
  93. 93.
    Lee J, Sorescu DC, Deng X. Electron-induced dissociation of CO2 on TiO2 (110). J Am Chem Soc, 2011, 133: 10066–10069Google Scholar
  94. 94.
    Zhang N, Li X, Ye H, et al. Oxide defect engineering enables to couple solar energy into oxygen activation. J Am Chem Soc, 2016, 138: 8928–8935Google Scholar
  95. 95.
    Gu J, Wuttig A, Krizan JW, et al. Mg-doped CuFeO2 photocathodes for photoelectrochemical reduction of carbon dioxide. J Phys Chem C, 2013, 117: 12415–12422Google Scholar
  96. 96.
    Peng H, Lu J, Wu C, et al. Co-doped MoS2 NPs with matched energy band and low overpotential high efficiently convert CO2 to methanol. Appl Surf Sci, 2015, 353: 1003–1012Google Scholar
  97. 97.
    Xi G, Ouyang S, Li P, et al. Ultrathin W18O49 nanowires with diameters below 1 nm: synthesis, near-infrared absorption, photoluminescence, and photochemical reduction of carbon dioxide. Angew Chem Int Ed, 2012, 51: 2395–2399Google Scholar
  98. 98.
    Liu L, Jiang Y, Zhao H, et al. Engineering coexposed {001} and {101} facets in oxygen-deficient TiO2 nanocrystals for enhanced CO2 photoreduction under visible light. ACS Catal, 2016, 6: 1097–1108Google Scholar
  99. 99.
    Ma M, Zhang K, Li P, et al. Dual oxygen and tungsten vacancies on a WO3 photoanode for enhanced water oxidation. Angew Chem Int Ed, 2016, 55: 11819–11823Google Scholar
  100. 100.
    Gao S, Sun Y, Lei F, et al. Freestanding atomically-thin cuprous oxide sheets for improved visible-light photoelectrochemical water splitting. Nano Energy, 2014, 8: 205–213Google Scholar
  101. 101.
    Li H, Shang J, Ai Z, et al. Efficient visible light nitrogen fixation with biobr nanosheets of oxygen vacancies on the exposed {001} facets. J Am Chem Soc, 2015, 137: 6393–6399Google Scholar
  102. 102.
    Qu Y, Duan X. Progress, challenge and perspective of heterogeneous photocatalysts. Chem Soc Rev, 2013, 42: 2568–2580Google Scholar
  103. 103.
    Wu F, Cao F, Liu Q, et al. Enhancing photoelectrochemical activity with three-dimensional p-CuO/n-ZnO junction photocathodes. Sci China Mater, 2016, 59: 825–832Google Scholar
  104. 104.
    Janáky C, Hursán D, Endrodi B, et al. Electro-and photoreduction of carbon dioxide: the twain shall meet at copper oxide/ copper interfaces. ACS Energy Lett, 2016, 1: 332–338Google Scholar
  105. 105.
    Garcia-Esparza AT, Limkrailassiri K, Leroy F, et al. Photoelectrochemical and electrocatalytic properties of thermally oxidized copper oxide for efficient solar fuel production. J Mater Chem A, 2014, 2: 7389–7401Google Scholar
  106. 106.
    Mahalingam T, John VS, Rajendran S, et al. Electrochemical deposition of ZnTe thin films. Semicond Sci Technol, 2002, 17: 465–470Google Scholar
  107. 107.
    Chen YW, Prange JD, Dühnen S, et al. Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation. Nat Mater, 2011, 10: 539–544Google Scholar
  108. 108.
    Esposito DV, Levin I, Moffat TP, et al. H2 evolution at Si-based metal-insulator-semiconductor photoelectrodes enhanced by inversion channel charge collection and H spillover. Nat Mater, 2013, 12: 562–568Google Scholar
  109. 109.
    Seger B, Pedersen T, Laursen AB, et al. Using TiO2 as a conductive protective layer for photocathodic H2 evolution. J Am Chem Soc, 2013, 135: 1057–1064Google Scholar
  110. 110.
    Schreier M, Gao P, Mayer MT, et al. Efficient and selective carbon dioxide reduction on low cost protected Cu2O photocathodes using a molecular catalyst. Energ Environ Sci, 2015, 8: 855–861Google Scholar
  111. 111.
    Bai S, Yin W, Wang L, et al. Surface and interface design in cocatalysts for photocatalytic water splitting and CO2 reduction. RSC Adv, 2016, 6: 57446–57463Google Scholar
  112. 112.
    Zhao J, Wang X, Xu Z, et al. Hybrid catalysts for photoelectrochemical reduction of carbon dioxide: a prospective review on semiconductor/metal complex co-catalyst systems. J Mater Chem A, 2014, 2: 15228–15233Google Scholar
  113. 113.
    Yang J, Wang D, Han H, et al. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc Chem Res, 2013, 46: 1900–1909Google Scholar
  114. 114.
    Kuhl KP, Hatsukade T, Cave ER, et al. Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J Am Chem Soc, 2014, 136: 14107–14113Google Scholar
  115. 115.
    Zhu W, Michalsky R, Metin Ö, et al. Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. J Am Chem Soc, 2013, 135: 16833–16836Google Scholar
  116. 116.
    Lu Q, Rosen J, Zhou Y, et al. A selective and efficient electrocatalyst for carbon dioxide reduction. Nat Commun, 2014, 5: 3242Google Scholar
  117. 117.
    Gao D, Zhou H, Wang J, et al. Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J Am Chem Soc, 2015, 137: 4288–4291Google Scholar
  118. 118.
    Lei F, Liu W, Sun Y, et al. Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction. Nat Commun, 2016, 7: 12697Google Scholar
  119. 119.
    Alvarez Guerra M, Quintanilla S, Irabien A. Conversion of carbon dioxide into formate using a continuous electrochemical reduction process in a lead cathode. Chem Eng J, 2012, 207-208: 278–284Google Scholar
  120. 120.
    Hou J, Cheng H, Takeda O, et al. Three-dimensional bimetalgraphene-semiconductor coaxial nanowire arrays to harness charge flow for the photochemical reduction of carbon dioxide. Angew Chem Int Ed, 2015, 54: 8480–8484Google Scholar
  121. 121.
    Long R, Li Y, Liu Y, et al. Isolation of Cu atoms in Pd lattice: forming highly selective sites for photocatalytic conversion of CO2 to CH4. J Am Chem Soc, 2017, 139: 4486–4492Google Scholar
  122. 122.
    Kuhl KP, Cave ER, Abram DN, et al. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ Sci, 2012, 5: 7050–7059Google Scholar
  123. 123.
    Hinogami R, Nakamura Y, Yae S, et al. An approach to ideal semiconductor electrodes for efficient photoelectrochemical reduction of carbon dioxide by modification with small metal particles. J Phys Chem B, 1998, 102: 974–980Google Scholar
  124. 124.
    Ikeda S, Saito Y, Yoshida M, et al. Photoelectrochemical reduction products of carbon dioxide at metal coated p-GaP photocathodes in non-aqueous electrolytes. J Electroanal Chem Interfacial Electrochem, 1989, 260: 335–345Google Scholar
  125. 125.
    Kaneco S, Ueno Y, Katsumata H, et al. Photoelectrochemical reduction of CO2 at p-InP electrode in copper particle-suspended methanol. Chem Eng J, 2009, 148: 57–62Google Scholar
  126. 126.
    Morris AJ, Meyer GJ, Fujita E. Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels. Acc Chem Res, 2009, 42: 1983–1994Google Scholar
  127. 127.
    Liu X, Inagaki S, Gong J. Heterogeneous molecular systems for photocatalytic CO2 reduction with water oxidation. Angew Chem Int Ed, 2016, 55: 14924–14950Google Scholar
  128. 128.
    Kou Y, Nabetani Y, Masui D, et al. direct detection of key reaction intermediates in photochemical CO2 reduction sensitized by a rhenium bipyridine complex. J Am Chem Soc, 2014, 136: 6021–6030Google Scholar
  129. 129.
    Kumar B, Smieja JM, Kubiak CP. Photoreduction of CO2 on ptype silicon using Re(bipy-But )(CO)3 Cl: photovoltages exceeding 600 mV for the selective reduction of CO2 to CO. J Phys Chem C, 2010, 114: 14220–14223Google Scholar
  130. 130.
    Kumar B, Smieja JM, Sasayama AF, et al. Tunable, light-assisted co-generation of CO and H2 from CO2 and H2O by Re(bipy-tbu) (CO)3Cl and p-Si in non-aqueous medium. Chem Commun, 2012, 48: 272–274Google Scholar
  131. 131.
    Arai T, Sato S, Uemura K, et al. Photoelectrochemical reduction of CO2 in water under visible-light irradiation by a p-type InP photocathode modified with an electropolymerized ruthenium complex. Chem Commun, 2010, 46: 6944–6946Google Scholar
  132. 132.
    Arai T, Sato S, Kajino T, et al. Solar CO2 reduction using H2O by a semiconductor/metal-complex hybrid photocatalyst: enhanced efficiency and demonstration of a wireless system using SrTiO3 photoanodes. Energy Environ Sci, 2013, 6: 1274–1282Google Scholar
  133. 133.
    Ueda Y, Takeda H, Yui T, et al. A visible-light harvesting system for CO2 reduction using a RuII-ReI photocatalyst adsorbed in mesoporous organosilica. ChemSusChem, 2015, 8: 439–442Google Scholar
  134. 134.
    Sahara G, Abe R, Higashi M, et al. Photoelectrochemical CO2 reduction using a Ru(ii)-Re(i) multinuclear metal complex on a p-type semiconducting NiO electrode. Chem Commun, 2015, 51: 10722–10725Google Scholar
  135. 135.
    Chen L, Guo Z, Wei X G, et al. Molecular catalysis of the electrochemical and photochemical reduction of CO2 with earthabundant metal complexes. Selective production of CO vs HCOOH by switching of the metal center. J Am Chem Soc, 2015, 137: 10918–10921Google Scholar
  136. 136.
    Thoi VS, Kornienko N, Margarit CG, et al. Visible-light photoredox catalysis: selective reduction of carbon dioxide to carbon monoxide by a nickel N-heterocyclic carbene-isoquinoline complex. J Am Chem Soc, 2013, 135: 14413–14424Google Scholar
  137. 137.
    Takeda H, Koizumi H, Okamoto K, et al. Photocatalytic CO2 reduction using a Mn complex as a catalyst. Chem Commun, 2014, 50: 1491–1493Google Scholar
  138. 138.
    Bonin J, Robert M, Routier M. Selective and efficient photocatalytic CO2 reduction to CO using visible light and an ironbased homogeneous catalyst. J Am Chem Soc, 2014, 136: 16768–16771Google Scholar
  139. 139.
    Alenezi K, Ibrahim SK, Li P, et al. Solar fuels: photoelectrosynthesis of CO from CO2 at p-Type Si using Fe porphyrin electrocatalysts. Chem Eur J, 2013, 19: 13522–13527Google Scholar
  140. 140.
    Rosser TE, Windle CD, Reisner E. Electrocatalytic and solardriven CO2 reduction to CO with a molecular manganese catalyst immobilized on mesoporous TiO2. Angew Chem Int Ed, 2016, 55: 7388–7392Google Scholar
  141. 141.
    Rao H, Schmidt LC, Bonin J, et al. Visible-light-driven methane formation from CO2 with a molecular iron catalyst. Nature, 2017, 548: 74–77Google Scholar
  142. 142.
    Taniguchi I, Aurian-Blajeni B, Bockris J O M. Photo-aided reduction of carbon dioxide to carbon monoxide. J Electroanal Chem Interfacial Electrochem, 1983, 157: 179–182Google Scholar
  143. 143.
    Taniguchi I, Aurian–Blajeni B, Bockris JOM. The mediation of the photoelectrochemical reduction of carbon dioxide by ammonium ions. J Electroanal Chem Interfacial Electrochem, 1984, 161: 385–388Google Scholar
  144. 144.
    Bockris JOM. The photoelectrocatalytic reduction of carbon dioxide. J Electrochem Soc, 1989, 136: 2521–2528Google Scholar
  145. 145.
    Barton EE, Rampulla DM, Bocarsly AB. Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell. J Am Chem Soc, 2008, 130: 6342–6344Google Scholar
  146. 146.
    Jeon JH, Mareeswaran PM, Choi CH, et al. Synergism between CdTe semiconductor and pyridine-photoenhanced electrocatalysis for CO2 reduction to formic acid. RSC Adv, 2014, 4: 3016–3019Google Scholar
  147. 147.
    Keith JA, Carter EA. Electrochemical reactivities of pyridinium in solution: consequences for CO2 reduction mechanisms. Chem Sci, 2013, 4: 1490–1496Google Scholar
  148. 148.
    Barton Cole E, Lakkaraju PS, Rampulla DM, et al. Using a oneelectron shuttle for the multielectron reduction of CO2 to methanol: kinetic, mechanistic, and structural insights. J Am Chem Soc, 2010, 132: 11539–11551Google Scholar
  149. 149.
    Keith JA, Carter EA. Theoretical insights into pyridinium-based photoelectrocatalytic reduction of CO2. J Am Chem Soc, 2012, 134: 7580–7583Google Scholar
  150. 150.
    Keith J A, Carter E A. Theoretical insights into electrochemical CO2 reduction mechanisms catalyzed by surface-bound nitrogen heterocycles. J Phys Chem Lett, 2013, 4: 4058–4063Google Scholar
  151. 151.
    Yan Y, Zeitler EL, Gu J, et al. Electrochemistry of aqueous pyridinium: exploration of a key aspect of electrocatalytic reduction of CO2 to methanol. J Am Chem Soc, 2013, 135: 14020–14023Google Scholar
  152. 152.
    Lim CH, Holder AM, Musgrave CB. Mechanism of homogeneous reduction of CO2 by pyridine: proton relay in aqueous solvent and aromatic stabilization. J Am Chem Soc, 2013, 135: 142–154Google Scholar
  153. 153.
    Lim CH, Holder AM, Hynes JT, et al. Reduction of CO2 to methanol catalyzed by a biomimetic organo-hydride produced from pyridine. J Am Chem Soc, 2014, 136: 16081–16095Google Scholar
  154. 154.
    Dridi H, Comminges C, Morais C, et al. Catalysis and inhibition in the electrochemical reduction of CO2 on platinum in the presence of protonated pyridine. New insights into mechanisms and products. J Am Chem Soc, 2017, 139: 13922–13928Google Scholar
  155. 155.
    Grace AN, Choi SY, Vinoba M, et al. Electrochemical reduction of carbon dioxide at low overpotential on a polyaniline/Cu2O nanocomposite based electrode. Appl Energy, 2014, 120: 85–94Google Scholar
  156. 156.
    Aydin R, Dogan HO, Koleli F. Electrochemical reduction of carbondioxide on polypyrrole coated copper electro-catalyst under ambient and high pressure in methanol. Appl Catal B, 2013, 140-141: 478–482Google Scholar
  157. 157.
    Coskun H, Aljabour A, De Luna P, et al. Biofunctionalized conductive polymers enable efficient CO2 electroreduction. Sci Adv, 2017, 3: e1700686Google Scholar
  158. 158.
    Won DH, Chung J, Park SH, et al. Photoelectrochemical production of useful fuels from carbon dioxide on a polypyrrolecoated p-ZnTe photocathode under visible light irradiation. J Mater Chem A, 2015, 3: 1089–1095Google Scholar
  159. 159.
    Guzmán D, Isaacs M, Osorio–Román I, et al. Photoelectrochemical reduction of carbon dioxide on quantum-dot-modified electrodes by electric field directed layer-by-layer assembly methodology. ACS Appl Mater Interfaces, 2015, 7: 19865–19869Google Scholar
  160. 160.
    Woolerton TW, Sheard S, Reisner E, et al. Efficient and clean photoreduction of CO2 to CO by enzyme-modified TiO2 nanoparticles using visible light. J Am Chem Soc, 2010, 132: 2132–2133Google Scholar
  161. 161.
    Reda T, Plugge CM, Abram NJ, et al. Reversible interconversion of carbon dioxide and formate by an electroactive enzyme. Proc Natl Acad Sci USA, 2008, 105: 10654–10658Google Scholar
  162. 162.
    Shi J, Jiang Y, Jiang Z, et al. Enzymatic conversion of carbon dioxide. Chem Soc Rev, 2015, 44: 5981–6000Google Scholar
  163. 163.
    Parkinson BA, Weaver PF. Photoelectrochemical pumping of enzymatic CO2 reduction. Nature, 1984, 309: 148–149Google Scholar
  164. 164.
    Bachmeier A, Wang VCC, Woolerton TW, et al. How lightharvesting semiconductors can alter the bias of reversible electrocatalysts in favor of H2 production and CO2 reduction. J Am Chem Soc, 2013, 135: 15026–15032Google Scholar
  165. 165.
    Kuk SK, Singh RK, Nam DH, et al. Photoelectrochemical reduction of carbon dioxide to methanol through a highly efficient enzyme cascade. Angew Chem Int Ed, 2017, 56: 3827–3832Google Scholar
  166. 166.
    Jing L, Zhou W, Tian G, et al. Surface tuning for oxide-based nanomaterials as efficient photocatalysts. Chem Soc Rev, 2013, 42: 9509–9549Google Scholar
  167. 167.
    Huang Y, Yu Y, Xin Y, et al. Promoting charge carrier utilization by integrating layered double hydroxide nanosheet arrays with porous BiVO4 photoanode for efficient photoelectrochemical water splitting. Sci China Mater, 2017, 60: 193–207Google Scholar
  168. 168.
    Bai Y, Mora–Seró I, De Angelis F, et al. Titanium dioxide nanomaterials for photovoltaic applications. Chem Rev, 2014, 114: 10095–10130Google Scholar
  169. 169.
    Cheng J, Zhang M, Wu G, et al. Photoelectrocatalytic reduction of CO2 into chemicals using Pt-modified reduced graphene oxide combined with Pt-modified TiO2 nanotubes. Environ Sci Technol, 2014, 48: 7076–7084Google Scholar
  170. 170.
    Cheng J, Zhang M, Wu G, et al. Optimizing CO2 reduction conditions to increase carbon atom conversion using a Pt-RGO Pt-TNT photoelectrochemical cell. Sol Energ Mater Sol Cells, 2015, 132: 606–614Google Scholar
  171. 171.
    Cheng J, Zhang M, Liu J, et al. A Cu foam cathode used as a Pt-RGO catalyst matrix to improve CO2 reduction in a photoelectrocatalytic cell with a TiO2 photoanode. J Mater Chem A, 2015, 3: 12947–12957Google Scholar
  172. 172.
    Huang H, Jia H, Liu Z, et al. Understanding of strain effects in the electrochemical reduction of CO2: using Pd nanostructures as an ideal platform. Angew Chem Int Ed, 2017, 56: 3594–3598Google Scholar
  173. 173.
    Zhao C, Dai X, Yao T, et al. Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO2. J Am Chem Soc, 2017, 139: 8078–8081Google Scholar
  174. 174.
    Kim D, Xie C, Becknell N, et al. Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles. J Am Chem Soc, 2017, 139: 8329–8336Google Scholar
  175. 175.
    Gao D, Zhang Y, Zhou Z, et al. Enhancing CO2 electroreduction with the metal-oxide interface. J Am Chem Soc, 2017, 139: 5652–5655Google Scholar
  176. 176.
    Zhu DD, Liu JL, Qiao SZ. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv Mater, 2016, 28: 3423–3452Google Scholar
  177. 177.
    Gao S, Lin Y, Jiao X, et al. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature, 2016, 529: 68–71Google Scholar
  178. 178.
    Kumar B, Atla V, Brian JP, et al. Reduced SnO2 porous nanowires with a high density of grain boundaries as catalysts for efficient electrochemical CO2-into-HCOOH conversion. Angew Chem Int Ed, 2017, 56: 3645–3649Google Scholar
  179. 179.
    Asadi M, Kumar B, Behranginia A, et al. Robust carbon dioxide reduction on molybdenum disulphide edges. Nat Commun, 2014, 5: 4470Google Scholar
  180. 180.
    Chan K, Tsai C, Hansen HA, et al. Molybdenum sulfides and selenides as possible electrocatalysts for CO2 reduction. Chem-CatChem, 2014, 6: 1899–1905Google Scholar
  181. 181.
    Kumar B, Asadi M, Pisasale D, et al. Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction. Nat Commun, 2013, 4: 2819Google Scholar
  182. 182.
    Wang H, Jia J, Song P, et al. Efficient electrocatalytic reduction of CO2 by nitrogen-doped nanoporous carbon/carbon nanotube membranes: a step towards the electrochemical CO2 refinery. Angew Chem Int Ed, 2017, 56: 7847–7852Google Scholar
  183. 183.
    Maeda K. Z-scheme water splitting using two different semiconductor photocatalysts. ACS Catal, 2013, 3: 1486–1503Google Scholar
  184. 184.
    Zhou P, Yu J, Jaroniec M. All-solid-state Z-scheme photocatalytic systems. Adv Mater, 2014, 26: 4920–4935Google Scholar
  185. 185.
    Winkler MT, Cox CR, Nocera DG, et al. Modeling integrated photovoltaic-electrochemical devices using steady-state equivalent circuits. Proc Natl Acad Sci USA, 2013, 110: E1076–E1082Google Scholar
  186. 186.
    Luo J, Im JH, Mayer MT, et al. Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts. Science, 2014, 345: 1593–1596Google Scholar
  187. 187.
    Jia Y, Xu Y, Nie R, et al. Artificial photosynthesis of methanol from carbon dioxide and water via a Nile red-embedded TiO2 photocathode. J Mater Chem A, 2017, 5: 5495–5501Google Scholar
  188. 188.
    Rongé J, Bosserez T, Martel D, et al. Monolithic cells for solar fuels. Chem Soc Rev, 2014, 43: 7963–7981Google Scholar
  189. 189.
    Reece SY, Hamel JA, Sung K, et al. Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science, 2011, 334: 645–648Google Scholar
  190. 190.
    Arai T, Sato S, Morikawa T. A monolithic device for CO2 photoreduction to generate liquid organic substances in a singlecompartment reactor. Energy Environ Sci, 2015, 8: 1998–2002Google Scholar
  191. 191.
    Haussener S, Xiang C, Spurgeon JM, et al. Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems. Energy Environ Sci, 2012, 5: 9922–9935Google Scholar
  192. 192.
    Bai S, Wang L, Li Z, et al. Facet-engineered surface and interface design of photocatalytic materials. Adv Sci, 2017, 4: 1600216Google Scholar
  193. 193.
    Bai S, Xiong Y. Some recent developments in surface and interface design for photocatalytic and electrocatalytic hybrid structures. Chem Commun, 2015, 51: 10261–10271Google Scholar
  194. 194.
    Kang P, Chen Z, Nayak A, et al. Single catalyst electrocatalytic reduction of CO2 in water to H2+CO syngas mixtures with water oxidation to O2. Energy Environ Sci, 2014, 7: 4007–4012Google Scholar
  195. 195.
    Ross MB, Dinh CT, Li Y, et al. Tunable Cu enrichment enables designer syngas electrosynthesis from CO2. J Am Chem Soc, 2017, 139: 9359–9363Google Scholar
  196. 196.
    Liu R, Yuan G, Joe CL, et al. Silicon nanowires as photoelectrodes for carbon dioxide fixation. Angew Chem Int Ed, 2012, 51: 6709–6712Google Scholar
  197. 197.
    Sun Y, Gao S, Lei F, et al. Atomically-thin two-dimensional sheets for understanding active sites in catalysis. Chem Soc Rev, 2015, 44: 623–636Google Scholar
  198. 198.
    Frenkel AI. Applications of extended X-ray absorption finestructure spectroscopy to studies of bimetallic nanoparticle catalysts. Chem Soc Rev, 2012, 41: 8163–8178Google Scholar
  199. 199.
    Akita T, Kohyama M, Haruta M. Electron microscopy study of gold nanoparticles deposited on transition metal oxides. Acc Chem Res, 2013, 46: 1773–1782Google Scholar
  200. 200.
    Wang Y, Wöll C. IR spectroscopic investigations of chemical and photochemical reactions on metal oxides: bridging the materials gap. Chem Soc Rev, 2017, 46: 1875–1932Google Scholar
  201. 201.
    Kim H, Kosuda KM, Van Duyne RP, et al. Resonance Raman and surface-and tip-enhanced Raman spectroscopy methods to study solid catalysts and heterogeneous catalytic reactions. Chem Soc Rev, 2010, 39: 4820–4844Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), School of Chemistry and Materials Science, and National Synchrotron Radiation LaboratoryUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations