Advertisement

Science China Materials

, Volume 61, Issue 3, pp 353–362 | Cite as

Ni(OH)2 nanoflakes supported on 3D hierarchically nanoporous gold/Ni foam as superior electrodes for supercapacitors

  • Xi Ke (柯曦)
  • Zouxin Zhang (张邹鑫)
  • Yifeng Cheng (程乙峰)
  • Yaohua Liang (梁耀华)
  • Zhiyuan Tan (谭植元)
  • Jun Liu (刘军)
  • Liying Liu (刘丽英)
  • Zhicong Shi (施志聪)
  • Zaiping Guo (郭再萍)
Articles

Abstract

The increasing demand for portable electronic devices and hybrid electric vehicles stimulates the development of supercapacitors as an advanced energy storage system. Here, we demonstrate a binder-free nickel hydroxide@nanoporous gold/Ni foam (Ni(OH)2@NPG/Ni foam) electrode for high-performance supercapacitors, which is prepared by a facile three-step fabrication route including electrodeposition of Au-Sn alloy on Ni foam, chemical dealloying of Sn and electrodepostion of Ni(OH)2 on NPG/Ni foam. Such Ni(OH)2@NPG/Ni foam electrode is composed of a thin layer of conformable Ni(OH)2 nanoflakes supported on three-dimensional (3D) hierarchically porous NPG/Ni foam substrate. The resulting Ni(OH)2@NPG/Ni foam electrode can offer highways for both electron transfer and ion transport and lead to an excellent electrochemical performance with an ultrahigh specific capacitance of 3380 F g-1 at a current density of 2 A g−1. Even when the current density was increased to 50 A g−1, it still retained a high capacitance of 1927 F g−1. The promising performance of the Ni(OH)2@NPG/Ni foam electrode is mainly ascribed to the 3D hierarchical porosity and the highly conductive network on the NPG/Ni foam composite current collector, as well as the conformal electrodeposition of Ni(OH)2 active material on the NPG/Ni foam, which induces the formation of interconnected porosity both on the top surface and on the inner surface of the electrode. This inspiring electrochemical performance would make the as-designed electrode material become one of the most promising candidates for future electrochemical energy storage systems.

Keywords

supercapacitor nanoporous gold nickel hydroxide electrode material hierarchical porosity 

三维分级结构氢氧化镍纳米片@纳米多孔金/泡沫镍超级电容器电极材料

摘要

人们对便携式电子器件和混合动力汽车的需求不断增长, 激发了超级电容器等先进储能体系的发展. 本文通过三步法, 包括电化学沉积金-锡合金、 化学去合金除锡以及电化学沉积氢氧化镍等, 制备了无需粘结剂的氢氧化镍@纳米多孔金/泡沫镍电极用作超级电容器电极材料. 该电极材料由支撑在三维分级多孔的纳米多孔金/泡沫镍基底表面的氢氧化镍纳米片薄层组成, 能够为电子传导与离子输运提供快速通道, 在2 A g−1的充放电电流密度下比电容值高达 3380 F g−1, 当充放电电流密度增大到50 A g−1时, 其比电容值仍能保持为1927 F g−1, 表现出优异的电化学性能. 氢氧化镍@纳米多孔金/泡沫镍电极材料具有优良电化学性能的原因在于其所拥有的三维分级多孔结构、 纳米多孔金/泡沫镍复合集流体的高导电网络以及氢氧化镍活性材料在纳米多孔金/泡沫镍表面的保形电沉积使整个电极的内外表面均形成互连的多孔结构. 氢氧化镍@纳米多孔金/泡沫镍电极材料所展现出的优异电化学性能令其有望成为未来最有前景的电化学储能材料之一.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21673051, 51604086), the Guangdong Science and Technology Department (2016A010104015), the Pearl River Scholar Funded Scheme of Guangdong Province Universities and Colleges (2015), the Science and Technology Program of Guangzhou (201604030037), the ‘One-hundred Talents plan’ (220418056), the ‘One-hundred Young Talents plan’ (220413126) and the Youth Foundation (252151038) of Guangdong University of Technology.

Supplementary material

40843_2017_9144_MOESM1_ESM.pdf (844 kb)
Ni(OH)2 nanoflakes supported on 3D hierarchically nanoporous gold/Ni foam as superior electrodes for supercapacitors

References

  1. 1.
    Winter M, Brodd RJ. What are batteries, fuel cells, and supercapacitors? Chem Rev, 2004, 104: 4245–4270CrossRefGoogle Scholar
  2. 2.
    Wu S, Zhu Y. Highly densified carbon electrode materials towards practical supercapacitor devices. Sci China Mater, 2017, 60: 25–38CrossRefGoogle Scholar
  3. 3.
    Yu Z, Tetard L, Zhai L, et al. Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energ Environ Sci, 2015, 8: 702–730CrossRefGoogle Scholar
  4. 4.
    Yan J, Wang Q, Wei T, et al. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv Energ Mater, 2014, 4: 1300816CrossRefGoogle Scholar
  5. 5.
    Ferris A, Garbarino S, Guay D, et al. 3D RuO2 microsupercapacitors with remarkable areal energy. Adv Mater, 2015, 27: 6625–6629CrossRefGoogle Scholar
  6. 6.
    Tan Q, Wang P, Liu H, et al. Hollow MOx-RuO2 (M = Co, Cu, Fe, Ni, CuNi) nanostructures as highly efficient electrodes for supercapacitors. Sci China Mater, 2016, 59: 323–336CrossRefGoogle Scholar
  7. 7.
    Yu Z, Duong B, Abbitt D, et al. Highly Ordered MnO2 Nanopillars for Enhanced Supercapacitor Performance. Adv Mater, 2013, 25: 3302–3306CrossRefGoogle Scholar
  8. 8.
    Kong S, Cheng K, Gao Y, et al. A novel three-dimensional manganese dioxide electrode for high performance supercapacitors. J Power Sources, 2016, 308: 141–148CrossRefGoogle Scholar
  9. 9.
    Della Noce R, Eugénio S, Silva TM, et al. α-Co(OH)2/carbon nanofoam composite as electrochemical capacitor electrode operating at 2 V in aqueous medium. J Power Sources, 2015, 288: 234–242CrossRefGoogle Scholar
  10. 10.
    Gao S, Sun Y, Lei F, et al. Ultrahigh energy density realized by a single-layer β-Co(OH)2 all-solid-state asymmetric supercapacitor. Angew Chem Int Ed, 2014, 53: 12789–12793CrossRefGoogle Scholar
  11. 11.
    Sun W, Rui X, Ulaganathan M, et al. Few-layered Ni(OH)2 nanosheets for high-performance supercapacitors. J Power Sources, 2015, 295: 323–328CrossRefGoogle Scholar
  12. 12.
    Du H, Wang Y, Yuan H, et al. Facile synthesis and high capacitive performance of 3D hierarchical Ni(OH)2 microspheres. Electrochim Acta, 2016, 196: 84–91CrossRefGoogle Scholar
  13. 13.
    Chen S, Duan J, Tang Y, et al. Hybrid hydrogels of porous graphene and nickel hydroxide as advanced supercapacitor materials. Chem Eur J, 2013, 19: 7118–7124CrossRefGoogle Scholar
  14. 14.
    Motori A, Sandrolini F, Davolio G. Electrical properties of nickel hydroxide for alkaline cell systems. J Power Sources, 1994, 48: 361–370CrossRefGoogle Scholar
  15. 15.
    Yang GW, Xu CL, Li HL. Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance. Chem Commun, 2008, 48: 6537–6539CrossRefGoogle Scholar
  16. 16.
    Lu Z, Chang Z, Zhu W, et al. Beta-phased Ni(OH)2 nanowall film with reversible capacitance higher than theoretical Faradic capacitance. Chem Commun, 2011, 47: 9651–9653CrossRefGoogle Scholar
  17. 17.
    Jiang W, Zhai S, Wei L, et al. Nickel hydroxide–carbon nanotube nanocomposites as supercapacitor electrodes: crystallinity dependent performances. Nanotechnology, 2015, 26: 314003CrossRefGoogle Scholar
  18. 18.
    Cheng H, Duong HM. Three dimensional carbon nanotube/nickel hydroxide gels for advanced supercapacitors. RSC Adv, 2015, 5: 30260–30267CrossRefGoogle Scholar
  19. 19.
    Wang K, Zhang X, Zhang X, et al. A novel Ni(OH)2/graphene nanosheets electrode with high capacitance and excellent cycling stability for pseudocapacitors. J Power Sources, 2016, 333: 156–163CrossRefGoogle Scholar
  20. 20.
    Mao L, Guan C, Huang X, et al. 3D graphene-nickel hydroxide hydrogel electrode for high-performance supercapacitor. Electrochim Acta, 2016, 196: 653–660CrossRefGoogle Scholar
  21. 21.
    Tang Z, Tang C, Gong H. A high energy density asymmetric supercapacitor from nano-architectured Ni(OH)2/carbon nanotube electrodes. Adv Funct Mater, 2012, 22: 1272–1278CrossRefGoogle Scholar
  22. 22.
    Liu YF, Yuan GH, Jiang ZH, et al. Preparation of Ni(OH)2-graphene sheet-carbon nanotube composite as electrode material for supercapacitors. J Alloys Compd, 2015, 618: 37–43CrossRefGoogle Scholar
  23. 23.
    Wang L, Li X, Guo T, et al. Three-dimensional Ni(OH)2 nanoflakes/graphene/nickel foam electrode with high rate capability for supercapacitor applications. Int J Hydrogen Energ, 2014, 39: 7876–7884CrossRefGoogle Scholar
  24. 24.
    Erlebacher J, Aziz MJ, Karma A, et al. Evolution of nanoporosity in dealloying. Nature, 2001, 410: 450–453CrossRefGoogle Scholar
  25. 25.
    Lang X, Hirata A, Fujita T, et al. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat Nanotech, 2011, 6: 232–236CrossRefGoogle Scholar
  26. 26.
    Chen LY, Hou Y, Kang JL, et al. Toward the theoretical capacitance of RuO2 reinforced by highly conductive nanoporous gold. Adv Energ Mater, 2013, 3: 851–856CrossRefGoogle Scholar
  27. 27.
    Kang J, Chen L, Hou Y, et al. Electroplated thick manganese oxide films with ultrahigh capacitance. Adv Energ Mater, 2013, 3: 857–863CrossRefGoogle Scholar
  28. 28.
    Kim SI, Kim SW, Jung K, et al. Ideal nanoporous gold based supercapacitors with theoretical capacitance and high energy/power density. Nano Energ, 2016, 24: 17–24CrossRefGoogle Scholar
  29. 29.
    Ke X, Xu Y, Yu C, et al. Nanoporous gold on three-dimensional nickel foam: an efficient hybrid electrode for hydrogen peroxide electroreduction in acid media. J Power Sources, 2014, 269: 461–465CrossRefGoogle Scholar
  30. 30.
    Ke X, Xu Y, Yu C, et al. Pd-decorated three-dimensional nanoporous Au/Ni foam composite electrodes for H2O2 reduction. J Mater Chem A, 2014, 2: 16474–16479CrossRefGoogle Scholar
  31. 31.
    Ke X, Li Z, Gan L, et al. Three-dimensional nanoporous Au films as high-efficiency enzyme-free electrochemical sensors. Electrochim Acta, 2015, 170: 337–342CrossRefGoogle Scholar
  32. 32.
    Xu Y, Ke X, Yu C, et al. A strategy for fabricating nanoporous gold films through chemical dealloying of electrochemically deposited Au-Sn alloys. Nanotechnology, 2014, 25: 445602CrossRefGoogle Scholar
  33. 33.
    Li Z, He Y, Ke X, et al. Three-dimensional nanoporous gold–cobalt oxide electrode for high-performance electroreduction of hydrogen peroxide in alkaline medium. J Power Sources, 2015, 294: 136–140CrossRefGoogle Scholar
  34. 34.
    Yan J, Fan Z, Sun W, et al. Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv Funct Mater, 2012, 22: 2632–2641CrossRefGoogle Scholar
  35. 35.
    Hou C, Lang XY, Wen Z, et al. Single-crystalline Ni(OH)2 nanosheets vertically aligned on a three-dimensional nanoporous metal for high-performance asymmetric supercapacitors. J Mater Chem A, 2015, 3: 23412–23419CrossRefGoogle Scholar
  36. 36.
    Li HB, Yu MH, Wang FX, et al. Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials. Nat Commun, 2013, 4: 1894CrossRefGoogle Scholar
  37. 37.
    Deng T, Zhang W, Arcelus O, et al. Atomic-level energy storage mechanism of cobalt hydroxide electrode for pseudocapacitors. Nat Commun, 2017, 8: 15194CrossRefGoogle Scholar
  38. 38.
    Kang JL, Hirata A, Qiu HJ, et al. Self-grown oxy-hydroxide@ nanoporous metal electrode for high-performance supercapacitors. Adv Mater, 2014, 26: 269–272CrossRefGoogle Scholar
  39. 39.
    Ji J, Zhang LL, Ji H, et al. Nanoporous Ni(OH)2 thin film on 3D ultrathin-graphite foam for asymmetric supercapacitor. ACS Nano, 2013, 7: 6237–6243CrossRefGoogle Scholar
  40. 40.
    Simon P, Gogotsi Y, Dunn B. Where do batteries end and supercapacitors begin? Science, 2014, 343: 1210–1211CrossRefGoogle Scholar
  41. 41.
    Wang HX, Zhang W, Drewett NE, et al. Unifying miscellaneous performance criteria for a prototype supercapacitor via Co(OH)2 active material and current collector interactions. J Microscopy, 2017, 267: 34–48CrossRefGoogle Scholar
  42. 42.
    Pan Z, Qiu Y, Yang J, et al. Ultra-endurance flexible all-solid-state asymmetric supercapacitors based on three-dimensionally coated MnOx nanosheets on nanoporous current collectors. Nano Energ, 2016, 26: 610–619CrossRefGoogle Scholar
  43. 43.
    Zhang G, Lou XWD. general solution growth of mesoporous NiCo2O4 nanosheets on various conductive substrates as highperformance electrodes for supercapacitors. Adv Mater, 2013, 25: 976–979CrossRefGoogle Scholar
  44. 44.
    Yeo BS, Bell AT. In situ Raman study of nickel oxide and goldsupported nickel oxide catalysts for the electrochemical evolution of oxygen. J Phys Chem C, 2012, 116: 8394–8400CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Xi Ke (柯曦)
    • 1
  • Zouxin Zhang (张邹鑫)
    • 1
  • Yifeng Cheng (程乙峰)
    • 1
  • Yaohua Liang (梁耀华)
    • 1
  • Zhiyuan Tan (谭植元)
    • 1
  • Jun Liu (刘军)
    • 1
  • Liying Liu (刘丽英)
    • 1
  • Zhicong Shi (施志聪)
    • 1
  • Zaiping Guo (郭再萍)
    • 2
  1. 1.Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and EnergyGuangdong University of Technology, Guangzhou Higher Education Mega CenterGuangzhouChina
  2. 2.Institute for Superconducting and Electronic Materials, School of Mechanical, Materials and Mechatronics EngineeringUniversity of WollongongNorth WollongongAustralia

Personalised recommendations