Science China Materials

, Volume 61, Issue 3, pp 391–400 | Cite as

Tuning optical properties of MOF-based thin films by changing the ligands of MOFs

  • Wenchang Yin (殷文昌)
  • Cheng-an Tao (陶呈安)
  • Fang Wang (王芳)
  • Jian Huang (黄坚)
  • Tianliang Qu (曲天良)
  • Jianfang Wang (王建方)
Articles

Abstract

The preparation and development of novel optical thin films are of great importance to functional optical and opto-electric components requiring a low refractive index. In this study, a typical metal-organic framework (MOF), MIL-101(Cr), is selected as the research model. The corresponding MOF nanoparticles are prepared by a hydrothermal method and the optical thin films are successfully prepared by spin-coating. The optical properties of the corresponding MOF thin films are controlled by changing the type of functional groups on the benzene ring of the ligand (terephthalic acid) on MOFs. The functional groups are hydrogen atoms (H), electron donating groups (−NH2, −OH) and electron withdrawing groups (−NO2, −(NO2)2 or F4), respectively. It is found that the effective refractive index (neff) of MOF thin films decreases along with the increasing voids among MOF nanoparticles. In addition, the extinction coefficient (k) increases with the addition of electron donating groups, and decreases with the addition of electron withdrawing groups. Among the MOFs used in this study, the neff of NO2-MIL-101(Cr) containing electron withdrawing groups is as low as ∼1.2, and value of k is particularly low, which suggests its potential application in antireflective devices. In addition, the intrinsic refractive index (ndense) of the dense MOF materials evaluated according to their porosity increases with the number of the functional groups, and the ndense of the two nitro-substituted MOFs is greater than that of the single nitro-substituted one, and the latter is bigger than that of hydroxyl-substituted one, which is close to that of amino-functionalized one. The diversity of ligands in MOFs makes them a promising new generation of optical materials.

Keywords

metal-organic frameworks thin film optical property refractive index changing of ligand 

配体改变法调控MOFs薄膜的光学性质

摘要

制备和开发新型光学薄膜村料对于功能性的光学和光电器件具有重要意义, 特别是具有低折射率的光学薄膜村料. 本论文选用一类典型的MOFs村料, MIL-101(Cr), 为研究对象, 通过水热法制备得到相应的MOFs纳米颗粒, 并通过旋涂法成功制备光学薄膜. 通过改变 配体(对苯二甲酸)苯环上功能团的种类: 氢原子(H)、 给电子基团(−NH2, −OH)和吸电子基团(−NO2, 双−NO2),来调控对应的MOFs光学薄膜的光学性质. 研究发现, MOFs薄膜的有效折射率neff道着MOFs纳米颗粒之间的孔隙的增加而减小, MOFs薄膜的消光系数k随着给电子基团的增加而增大, 而随着吸电子基团的增加而减小. 其中, 含有吸电子基团的MOF即NO2-MIL-101(Cr)的折射率最小, 低至1.2左右, 而且消光系数特别小, 该MOFs薄膜有望应用于减反射器件. 此外, 根据孔隙率计算得到, MOFs村料的本征折射率ndense随着功能基团的增加而增大, 而且双硝基取代的MOFs的折射率大于硝基取代的, 大于羟基取代的折射率, 而羟基取代的与氨基取代的折射率差不多. MOFs村料中配体的多样性, 使其有望成为新一代的光学村料.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21203247 and 21573285) and research project of National University of Defense Technology (ZK16-03-51). We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Supplementary material

40843_2017_9143_MOESM1_ESM.pdf (3 mb)
Tunable optical properties of MOFs-based thin films via changing the ligands of MOFs

References

  1. 1.
    Epstein LI. The design of optical filters. J Opt Soc Am, 1952, 42: 806–808CrossRefGoogle Scholar
  2. 2.
    Wen X, Xiong Q. A large scale perfect absorber and optical switch based on phase change material (Ge2Sb2Te5) thin film. Sci China Mater, 2016, 59: 165–172CrossRefGoogle Scholar
  3. 3.
    Schulze M, Lehr D, Helgert M, et al. Transmission enhanced optical lenses with self-organized antireflective subwavelength structures for the UV range. Opt Lett, 2011, 36: 3924CrossRefGoogle Scholar
  4. 4.
    Wongcharee K, Brungs M, Chaplin R, et al. Sol-gel processing by aging and pore creator addition for porous silica antireflective coatings. J Sol-Gel Sci Tech, 2002, 25: 215–221CrossRefGoogle Scholar
  5. 5.
    Bernsmeier D, Polte J, Ortel E, et al. Antireflective coatings with adjustable refractive index and porosity synthesized by micelletemplated deposition of MgF2 sol particles. ACS Appl Mater Interfaces, 2014, 6: 19559–19565CrossRefGoogle Scholar
  6. 6.
    Sindoro M, Yanai N, Jee AY, et al. Colloidal-sized metal–organic frameworks: synthesis and applications. Acc Chem Res, 2014, 47: 459–469CrossRefGoogle Scholar
  7. 7.
    Park KS, Ni Z, Côté AP, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci USA, 2006, 103: 10186–10191CrossRefGoogle Scholar
  8. 8.
    Murray LJ, Dinca M, Long JR. Hydrogen storage in metal–organic frameworks. Chem Soc Rev, 2009, 38: 1294–1314CrossRefGoogle Scholar
  9. 9.
    Lee JY, Farha OK, Roberts J, et al. Metal–organic framework materials as catalysts. Chem Soc Rev, 2009, 38: 1450–1459CrossRefGoogle Scholar
  10. 10.
    Wu S, Zhu Y, Huo Y, et al. Bimetallic organic frameworks derived CuNi/carbon nanocomposites as efficient electrocatalysts for oxygen reduction reaction. Sci China Mater, 2017, 60: 654–663CrossRefGoogle Scholar
  11. 11.
    Horcajada P, Chalati T, Serre C, et al. Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat Mater, 2010, 9: 172–178CrossRefGoogle Scholar
  12. 12.
    Serre C, Mellot-Draznieks C, Surblé S, et al. Role of solvent-host interactions that lead to very large swelling of hybrid frameworks. Science, 2007, 315: 1828–1831CrossRefGoogle Scholar
  13. 13.
    Kreno LE, Leong K, Farha OK, et al. Metal–organic framework materials as chemical sensors. Chem Rev, 2012, 112: 1105–1125CrossRefGoogle Scholar
  14. 14.
    Wu Y, Li F, Zhu W, et al. Metal-organic frameworks with a threedimensional ordered macroporous structure: dynamic photonic materials. Angew Chem Int Ed, 2011, 50: 12518–12522CrossRefGoogle Scholar
  15. 15.
    Peplow M. Materials science: the hole story. Nature, 2015, 520: 148–150CrossRefGoogle Scholar
  16. 16.
    Xu X, Lu Y, Yang Y, et al. Tuning the growth of metal-organic framework nanocrystals by using polyoxometalates as coordination modulators. Sci China Mater, 2015, 58: 370–377CrossRefGoogle Scholar
  17. 17.
    Patricia H, Christian S, David G, et al. Colloidal route for preparing optical thin films of nanoporous metal–organic frameworks. Adv Mater, 2009, 21: 1931–1935CrossRefGoogle Scholar
  18. 18.
    Demessence A, Horcajada P, Serre C, et al. Elaboration and properties of hierarchically structured optical thin films of MIL-101(Cr). Chem Commun, 2009, 309: 7149–7151CrossRefGoogle Scholar
  19. 19.
    Márquez AG, Demessence A, Platero-Prats AE, et al. Green microwave synthesis of MIL-100(Al, Cr, Fe) nanoparticles for thinfilm elaboration. Eur J Inorg Chem, 2012: 5165–5174Google Scholar
  20. 20.
    Redel E, Wang Z, Walheim S, et al. On the dielectric and optical properties of surface-anchored metal-organic frameworks: a study on epitaxially grown thin films. Appl Phys Lett, 2013, 103: 091903CrossRefGoogle Scholar
  21. 21.
    Lu G, Hupp JT. Metal-organic frameworks as sensors: a ZIF-8 based Fabry-Perot device as a selective sensor for chemical vapors and gases. J Am Chem Soc, 2010, 132: 7832–7833CrossRefGoogle Scholar
  22. 22.
    Ranft A, Niekiel F, Pavlichenko I, et al. Tandem MOF-based photonic crystals for enhanced analyte-specific optical detection. Chem Mater, 2015, 27: 1961–1970CrossRefGoogle Scholar
  23. 23.
    Hu Z, Tao C, Liu H, et al. Fabrication of an NH2-MIL-88B photonic film for naked-eye sensing of organic vapors. J Mater Chem A, 2014, 2: 14222–14227CrossRefGoogle Scholar
  24. 24.
    Hu Z, Tao C, Wang F, et al. Flexible metal–organic frameworkbased one-dimensional photonic crystals. J Mater Chem C, 2015, 3: 211–216CrossRefGoogle Scholar
  25. 25.
    Yin W, Tao CA, Zou X, et al. The tuning of optical properties of nanoscale MOFs-based thin film through post-modification. Nanomaterials, 2017, 7: 242CrossRefGoogle Scholar
  26. 26.
    Jiang D, Burrows AD, Edler KJ. Size-controlled synthesis of MIL-101(Cr) nanoparticles with enhanced selectivity for CO2 over N2. CrystEngComm, 2011, 13: 6916–6919CrossRefGoogle Scholar
  27. 27.
    Jiang D, Keenan LL, Burrows AD, et al. Synthesis and post-synthetic modification of MIL-101(Cr)-NH2 via a tandem diazotisation process. Chem Commun, 2012, 48: 12053CrossRefGoogle Scholar
  28. 28.
    Férey G, Mellot-Draznieks C, Serre C, et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science, 2005, 309: 2040–2042CrossRefGoogle Scholar
  29. 29.
    Modrow A, Zargarani D, Herges R, et al. Introducing a photoswitchable azo-functionality inside Cr-MIL-101-NH2 by covalent post-synthetic modification. Dalton Trans, 2012, 41: 8690–8696CrossRefGoogle Scholar
  30. 30.
    Bernt S, Guillerm V, Serre C, et al. Direct covalent post-synthetic chemical modification of Cr-MIL-101 using nitrating acid. Chem Commun, 2011, 47: 2838–2840CrossRefGoogle Scholar
  31. 31.
    Jiang D, Burrows AD, Xiong Y, et al. Facile synthesis of crack-free metal–organic framework films on alumina by a dip-coating route in the presence of polyethylenimine. J Mater Chem A, 2013, 1: 5497–5500CrossRefGoogle Scholar
  32. 32.
    Garnett JCM. Colours in metal glasses, in metallic films, and in metallic solutions. II. Philos Trans R Soc A-Math Phys Eng Sci, 1906, 205: 237–288CrossRefGoogle Scholar
  33. 33.
    Bruggeman DAG. Dielectric constant and conductivity of mixtures of isotropic materials. Ann Phys, 1935, 24: 636–679CrossRefGoogle Scholar
  34. 34.
    Schoedel A, Scherb C, Bein T. Oriented nanoscale films of metalorganic frameworks by room-temperature gel-layer synthesis. Angew Chem Int Ed, 2010, 49: 7225–7228CrossRefGoogle Scholar
  35. 35.
    Stavila V, Schneider C, Mowry C, et al. Thin film growth of nbo MOFs and their integration with electroacoustic devices. Adv Funct Mater, 2016, 26: 1699–1707CrossRefGoogle Scholar
  36. 36.
    Li X, Yu X, Han Y. Polymer thin films for antireflection coatings. J Mater Chem C, 2013, 1: 2266–2285CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Wenchang Yin (殷文昌)
    • 1
  • Cheng-an Tao (陶呈安)
    • 1
  • Fang Wang (王芳)
    • 1
  • Jian Huang (黄坚)
    • 1
  • Tianliang Qu (曲天良)
    • 2
  • Jianfang Wang (王建方)
    • 1
  1. 1.College of ScienceNational University of Defense TechnologyChangshaChina
  2. 2.College of Optoelectronic Science and EngineeringNational University of Defense TechnologyChangshaChina

Personalised recommendations