Skip to main content
Log in

In-situ wet tearing based subnanometer MoSeS for efficient hydrogen evolution

原位湿法撕裂制备超小MoSeS纳米材料用于高效析氢

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

The development of ultrasmall transition-metal dichalcogenide (such as MoS2, MoSe2) nanostructures is an efficient strategy to increase the active edge sites and overall performance for hydrogen evolution reaction. Here, we report an in-situ tearing strategy to produce the carbon nanotube supported subnanometer ternary MoSeS (denoted as CNTs@NiSe@MoSeS) for efficient hydrogen evolution. Large (18.3 ± 1.1 nm in length) multilayer MoS2 sheets grown on Ni (OH)2 thin film are torn into subnanometer (5.2 ± 0.7 nm in length) MoSeS via a subsequent selenization progress, along with the transformation of Ni(OH)2 thin film into small NiSe nanoplates. The resulting nanocomposite exhibits abundant active edge sites, outstanding 10,000-cycle stability and ultrahigh activity with a low overpotential of 189 mV at a high current density of 200 mA cm−2 toward hydrogen evolution.

摘要

制备超小型层状金属硫属化合物是一种有效增加边缘活性位点和高效提升析氢性能的方法. 本文首次报道了一种原位撕裂的方法来制备由碳纳米管(CNTs)支撑的三元MoSeS纳米复合析氢催化剂. 生长在CNTs@Ni(OH)2薄膜上的大尺寸多层MoS2片(18.3± 1.1 nm), 通过原位的硒化过程被撕裂成超小的MoSeS(5.2 ± 0.7nm)纳米片, 同时Ni(OH)2薄膜也被转化为小尺寸的NiSe纳米晶, 最终得到的纳米复合催化剂具有丰富的边缘活性位点,表现出超高的活性, 在200 mA cm−2高的电流密度下, 过电势只要189 mV; 同时在10000次循环下, 依旧保持优异的稳定性. 该工作为纳米晶催化剂的设计和应用打下了良好的基础.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kong D, Wang H, Lu Z, et al. CoSe2 nanoparticles grown on carbon fiber paper: an efficient and stable electrocatalyst for hydrogen evolution reaction. J Am Chem Soc, 2014, 136: 4897–4900

    Article  Google Scholar 

  2. Faber MS, Dziedzic R, Lukowski MA, et al. High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures. J Am Chem Soc, 2014, 136: 10053–10061

    Article  Google Scholar 

  3. Wang DY, Gong M, Chou HL, et al. Highly active and stable hybrid catalyst of cobalt-doped FeS2 nanosheets–carbon nanotubes for hydrogen evolution reaction. J Am Chem Soc, 2015, 137: 1587–1592

    Article  Google Scholar 

  4. Cheng L, Huang W, Gong Q, et al. Ultrathin WS2 nanoflakes as a high-performance electrocatalyst for the hydrogen evolution reaction. Angew Chem Int Ed, 2014, 53: 7860–7863

    Article  Google Scholar 

  5. Deng J, Ren P, Deng D, et al. Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction. Angew Chem Int Ed, 2015, 54: 2100–2104

    Article  Google Scholar 

  6. Jiang P, Liu Q, Liang Y, et al. A cost-effective 3D hydrogen evolution cathode with high catalytic activity: FeP nanowire array as the active phase. Angew Chem Int Ed, 2014, 53: 12855–12859

    Article  Google Scholar 

  7. Popczun EJ, Read CG, Roske CW, et al. Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew Chem Int Ed, 2014, 53: 5427–5430

    Article  Google Scholar 

  8. Yang J, Voiry D, Ahn SJ, et al. Two-dimensional hybrid nanosheets of tungsten disulfide and reduced graphene oxide as catalysts for enhanced hydrogen evolution. Angew Chem Int Ed, 2013, 52: 13751–13754

    Article  Google Scholar 

  9. Wang P, Jiang K, Wang G, et al. Phase and interface engineering of platinum-nickel nanowires for efficient electrochemical hydrogen evolution. Angew Chem Int Ed, 2016, 55: 12859–12863

    Article  Google Scholar 

  10. Zhang B, Wang HH, Su H, et al. Nitrogen-doped graphene microtubes with opened inner voids: highly efficient metal-free electrocatalysts for alkaline hydrogen evolution reaction. Nano Res, 2016, 9: 2606–2615

    Article  Google Scholar 

  11. Lu S, Zhuang Z. Electrocatalysts for hydrogen oxidation and evolution reactions. Sci China Mater, 2016, 59: 217–238

    Article  Google Scholar 

  12. Zheng Y, Jiao Y, Zhu Y, et al. Hydrogen evolution by a metal-free electrocatalyst. Nat Commun, 2014, 5: 3783

    Google Scholar 

  13. Sheng W, Zhuang Z, Gao M, et al. Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy. Nat Commun, 2015, 6: 5848–5853

    Article  Google Scholar 

  14. Huang X, Zeng Z, Bao S, et al. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat Commun, 2013, 4: 1444–1451

    Article  Google Scholar 

  15. Zhang Y, Gong Q, Li L, et al. MoSe2 porous microspheres comprising monolayer flakes with high electrocatalytic activity. Nano Res, 2015, 8: 1108–1115

    Article  Google Scholar 

  16. Yang H, Zhang Y, Hu F, et al. Urchin-like CoP nanocrystals as hydrogen evolution reaction and oxygen reduction reaction dualelectrocatalyst with superior stability. Nano Lett, 2015, 15: 7616–7620

    Article  Google Scholar 

  17. Li H, Wang L. NaYF4:Yb3+/Er3+ nanoparticle-based upconversion luminescence resonance energy transfer sensor for mercury(ii) quantification. Analyst, 2013, 138: 1589–1595

    Article  Google Scholar 

  18. Cummins DR, Martinez U, Sherehiy A, et al. Efficient hydrogen evolution in transition metal dichalcogenides via a simple one-step hydrazine reaction. Nat Commun, 2016, 7: 11857–11866

    Article  Google Scholar 

  19. Liu D, Xu W, Liu Q, et al. Unsaturated-sulfur-rich MoS2 nanosheets decorated on free-standing SWNT film: Synthesis, characterization and electrocatalytic application. Nano Res, 2016, 9: 2079–2087

    Article  Google Scholar 

  20. Thoi VS, Sun Y, Long JR, et al. Complexes of earth-abundant metals for catalytic electrochemical hydrogen generation under aqueous conditions. Chem Soc Rev, 2013, 42: 2388–2400

    Article  Google Scholar 

  21. Sun Y, Gao S, Lei F, et al. Atomically-thin two-dimensional sheets for understanding active sites in catalysis. Chem Soc Rev, 2015, 44: 623–636

    Article  Google Scholar 

  22. Xie J, Zhang H, Li S, et al. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv Mater, 2013, 25: 5807–5813

    Article  Google Scholar 

  23. Tang YJ, Wang Y, Wang XL, et al. Molybdenum disulfide/nitrogen-doped reduced graphene oxide nanocomposite with enlarged interlayer spacing for electrocatalytic hydrogen evolution. Adv Energ Mater, 2016, 6: 1600116

    Article  Google Scholar 

  24. Xie J, Qu H, Xin J, et al. Defect-rich MoS2 nanowall catalyst for efficient hydrogen evolution reaction. Nano Res, 2017, 10: 1178–1188

    Article  Google Scholar 

  25. Yang Y, Xu X, Wang X. Synthesis of Mo-based nanostructures from organic-inorganic hybrid with enhanced electrochemical for water splitting. Sci China Mater, 2015, 58: 775–784

    Article  Google Scholar 

  26. Shima S, Pilak O, Vogt S, et al. The crystal structure of [Fe]-hydrogenase reveals the geometry of the active site. Science, 2008, 321: 572–575

    Article  Google Scholar 

  27. Asadi M, Kumar B, Behranginia A, et al. Robust carbon dioxide reduction on molybdenum disulphide edges. Nat Commun, 2014, 5: 4470–4477

    Article  Google Scholar 

  28. Zheng Y, Jiao Y, Jaroniec M, et al. Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory. Angew Chem Int Ed, 2015, 54: 52–65

    Article  Google Scholar 

  29. Jaramillo TF, Jørgensen KP, Bonde J, et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science, 2007, 317: 100–102

    Article  Google Scholar 

  30. Karunadasa HI, Montalvo E, Sun Y, et al. A molecular MoS2 edge site mimic for catalytic hydrogen generation. Science, 2012, 335: 698–702

    Article  Google Scholar 

  31. Hinnemann B, Moses PG, Bonde J, et al. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J Am Chem Soc, 2005, 127: 5308–5309

    Article  Google Scholar 

  32. Tsai C, Abild-Pedersen F, Nørskov JK. Tuning the MoS2 edge-site activity for hydrogen evolution via support interactions. Nano Lett, 2014, 14: 1381–1387

    Article  Google Scholar 

  33. Hong X, Liu J, Zheng B, et al. A universal method for preparation of noble metal nanoparticle-decorated transition metal dichalcogenide nanobelts. Adv Mater, 2014, 26: 6250–6254

    Article  Google Scholar 

  34. Zhang X, Lai Z, Liu Z, et al. A facile and universal top-down method for preparation of monodisperse transition-metal dichalcogenide nanodots. Angew Chem Int Ed, 2015, 54: 5425–5428

    Article  Google Scholar 

  35. Gao MR, Chan MKY, Sun Y. Edge-terminated molybdenum disulfide with a 9.4-Å interlayer spacing for electrochemical hydrogen production. Nat Commun, 2015, 6: 7493–7500

    Article  Google Scholar 

  36. Lukowski MA, Daniel AS, Meng F, et al. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J Am Chem Soc, 2013, 135: 10274–10277

    Article  Google Scholar 

  37. Voiry D, Salehi M, Silva R, et al. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett, 2013, 13: 6222–6227

    Article  Google Scholar 

  38. Geng X, Wu W, Li N, et al. Three-dimensional structures of MoS2 nanosheets with ultrahigh hydrogen evolution reaction in water reduction. Adv Funct Mater, 2014, 24: 6123–6129

    Article  Google Scholar 

  39. Wang H, Lu Z, Kong D, et al. Electrochemical tuning of MoS2 nanoparticles on three-dimensional substrate for efficient hydrogen evolution. ACS Nano, 2014, 8: 4940–4947

    Article  Google Scholar 

  40. Liao L, Zhu J, Bian X, et al. MoS2 formed on mesoporous graphene as a highly active catalyst for hydrogen evolution. Adv Funct Mater, 2013, 23: 5326–5333

    Article  Google Scholar 

  41. Zhang C, Li J, Shi C, et al. Effect of Ni, Fe and Fe-Ni alloy catalysts on the synthesis of metal contained carbon nano-onions and studies of their electrochemical hydrogen storage properties. J Energ Chem, 2014, 23: 324–330

    Article  Google Scholar 

  42. Chang YH, Lin CT, Chen TY, et al. Highly efficient electrocatalytic hydrogen production by MoSx grown on graphene-protected 3D Ni foams. Adv Mater, 2013, 25: 756–760

    Article  Google Scholar 

  43. Cui J, Jiang R, Lu W, et al. Plasmon-enhanced photoelectrical hydrogen evolution on monolayer MoS2 decorated Cu1.75S-Au nanocrystals. Small, 2017, 13: 1602235–1602241

    Article  Google Scholar 

  44. Kibsgaard J, Chen Z, Reinecke BN, et al. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat Mater, 2012, 11: 963–969

    Article  Google Scholar 

  45. Seo B, Jung GY, Sa YJ, et al. Monolayer-precision synthesis of molybdenum sulfide nanoparticles and their nanoscale size effects in the hydrogen evolution reaction. ACS Nano, 2015, 9: 3728–3739

    Article  Google Scholar 

  46. Xu J, Cui J, Guo C, et al. Ultrasmall Cu7S4@MoS2 hetero-nanoframes with abundant active edge sites for ultrahigh-performance hydrogen evolution. Angew Chem Int Ed, 2016, 55: 6502–6505

    Article  Google Scholar 

  47. Li DJ, Maiti UN, Lim J, et al. Molybdenum sulfide/N-doped CNT forest hybrid catalysts for high-performance hydrogen evolution reaction. Nano Lett, 2014, 14: 1228–1233

    Article  Google Scholar 

  48. Merki D, Fierro S, Vrubel H, et al. Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem Sci, 2011, 2: 1262–1267

    Article  Google Scholar 

  49. Li Y, Wang H, Xie L, et al. MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc, 2011, 133: 7296–7299

    Article  Google Scholar 

  50. Zhang X, Lai Z, Tan C, et al. Solution-processed two-dimensional MoS2 nanosheets: preparation, hybridization, and applications. Angew Chem Int Ed, 2016, 55: 8816–8838

    Article  Google Scholar 

  51. Shi Y, Wang Y, Wong JI, et al. Self-assembly of hierarchical MoSx/CNT nanocomposites (2<x<3): towards high performance anode materials for lithium ion batteries. Sci Rep, 2013, 3: 2169–2176

    Article  Google Scholar 

  52. Li H, Yu K, Li C, et al. Charge-transfer induced high efficient hydrogen evolution of MoS2/graphene cocatalyst. Sci Rep, 2016, 5: 18730

    Article  Google Scholar 

  53. Conway BE, Tilak BV. Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochim Acta, 2002, 47: 3571–3594

    Article  Google Scholar 

  54. Xie J, Zhang J, Li S, et al. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J Am Chem Soc, 2013, 135: 17881–17888

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the National Natural Science Foundation of China (21475007 and 21675009), and the Fundamental Research Funds for the Central Universities (buctrc201608 and buctrc201720). We also thank the support from the “Public Hatching Platform for Recruited Talents of Beijing University of Chemical Technology”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiabin Cui  (崔家斌) or Leyu Wang  (汪乐余).

Additional information

Wenli Lu is currently a Master candidate in chemistry under the supervision of Prof. Leyu Wang at Beijing University of Chemical Technology (BUCT) since 2015. His research interest is focused on the fabrication of functional nanostructures for electrocatalysis.

Leyu Wang is a professor of chemistry at BUCT. He received his PhD in chemistry from Tsinghua University with Prof. Yadong Li in 2007. Then he joined Prof. Huang’s group at the University of California at Los Angeles (UCLA) as a postdoctoral researcher from 2007 to 2009. He moved to BUCT’s Chemistry Department in October 2009. His research interests span from the controlled synthesis of upconversion luminescence nanoparticles (UCNPs), localized surface plasmon resonance (LSPR) near-infrared (NIR) semiconductor NPs, magnetic nanomaterials, metal-semiconductor heteronanostructures, and molecularly imprinted polymers (MIPs) nanomaterials to the applications including electro-catalysis, artificial photosynthesis, biochemical sensing, multimodal imaging, drug/gene delivery and photothermo/chemo-therapy.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, W., Cui, J., Jiang, R. et al. In-situ wet tearing based subnanometer MoSeS for efficient hydrogen evolution. Sci. China Mater. 60, 929–936 (2017). https://doi.org/10.1007/s40843-017-9112-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-017-9112-4

Keywords

Navigation