Science China Materials

, Volume 60, Issue 10, pp 947–954 | Cite as

Fabrication of multifunctional carbon encapsulated Ni@NiO nanocomposites for oxygen reduction, oxygen evolution and lithium-ion battery anode materials

  • Dongyang Xu (徐冬阳)
  • Congpu Mu (牟从普)Email author
  • Bochong Wang (王博肿)
  • Jianyong Xiang (向建勇)
  • Wenjun Ruan (阮文君)
  • Fusheng Wen (温福昇)Email author
  • Xia Du (杜夏)
  • Zhongyuan Liu (柳忠元)Email author
  • Yongjun Tian (田永君)


Multifunctional carbon encapsulated Ni@NiO nanocomposites (Ni@NiO@C) were synthesized for applications in oxygen reduction reactions (ORR), oxygen evolution reactions (OER) and lithium-ion batteries (LIB). The morphology was investigated via SEM and TEM, suggesting that the Ni@NiO@C nanocomposites have uniform and spherical core-shell structures. When the Ni@NiO@C nanocomposite is used as the catalyst in ORR, 90% of the initial current density can be maintained after 15 h in O2-saturated 0.1 mol L−1 KOH at 0.3 V under a rotation speed of 1600 rpm. As a catalyst for OER, the highest activity overpotential of the Ni@NiO@C nanocomposite electrocatalyst is 380 mV (vs. RHE) under the current density of 10 mA cm−2, and the Tafel slope was calculated to be 55 mV dec−1 by linear fitting. Electrochemical performances of the Ni@NiO@C nanocomposites used as LIB electrodes exhibited a long cycling life with a high capacity of 750 mA h g1 after 400 cycles under 200 mA g−1.


oxygen evolution reaction lithium-ion battery oxygen reduction reaction NiO 

多功能碳包覆的Ni@NiO纳米复合材料用于析氧反应、 氧还原反应和锂离子电池电极的研究


本文成功合成了多功能的碳包覆Ni@NiO纳米复合材料, 并将其用作析氧反应和氧还原反应催化剂以及锂离子电池的负极材料. 扫描电镜和透射电镜照片表明Ni@NiO@Cm米复合物具有均一的球形核壳结构. 将Ni@NiO@C纳米复合物用作氧还原反应的催化剂时, 在浓度为0.1 mol L−1的氢氧化钾溶中以1600 rpm转速下连续反应15小时后, 电流密度仍然可以保持在初始值的90%以上. 作为析氧反应的催化剂时, 在电流密度为10 mA cm−2时Ni@NiO@C纳米复合物的活性电位是380 mV (vs. RHE). 同时线性拟合的塔菲尔斜率为55 mV dec−1. Ni@NiO@C纳米复合物被用作锂离子电池的负极材料时, 在电流密度为200 mA g−1下循环400圈后, 电池容量还可以达到750 mA h g−1. 结果表明Ni@NiO@Cm米复合物用于氧还原反应、 析氧反应和锂离子电池均具有优异的电化学性能.



This work was supported by the National Natural Science Foundation of China (51571172, 51672240, 51571171, and 11404280), the Natural Science Foundation for Distinguished Young Scholars of Hebei Province (E2017203095), the Natural Science Foundation of Hebei Province (E2016203484 and A2015203337), and the Research Program of the College Science & Technology of Hebei Province (ZD2017083 and QN2014047).

Supplementary material

40843_2017_9094_MOESM1_ESM.pdf (289 kb)
Fabrication of multifunctional carbon encapsulated Ni@NiO nanocomposites for oxygen reduction, oxygen evolution and lithium-ion battery anode materials


  1. 1.
    Wang H, Zhang X. Designing multi-shelled metal oxides: towards high energy-density lithium-ion batteries. Sci China Mater, 2016, 59: 521–522CrossRefGoogle Scholar
  2. 2.
    Gao MR, Xu YF, Jiang J, et al. Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. Chem Soc Rev, 2013, 42: 2986–3017CrossRefGoogle Scholar
  3. 3.
    Lewandowicz G, Jankowski T, Fornal J. Effect of microwave radiation on physico-chemical properties and structure of cereal starches. Carbohydrate Polymers, 2000, 42: 193–199CrossRefGoogle Scholar
  4. 4.
    Zhang G, Xu Y, Wang L, et al. Rational design of graphene oxide and its hollow CoO composite for superior oxygen reduction reaction. Sci China Mater, 2015, 58: 534–542CrossRefGoogle Scholar
  5. 5.
    Zhao R, Xia W, Lin C, et al. A pore-expansion strategy to synthesize hierarchically porous carbon derived from metal-organic framework for enhanced oxygen reduction. Carbon, 2017, 114: 284–290CrossRefGoogle Scholar
  6. 6.
    Liu M, Steven Tay NH, Bell S, et al. Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies. Renew Sustain Energ Rev, 2016, 53: 1411–1432CrossRefGoogle Scholar
  7. 7.
    Xu D, Mu C, Xiang J, et al. Carbon-encapsulated Co3O4@CoO@Co nanocomposites for multifunctional applications in enhanced long-life lithium storage, supercapacitor and oxygen evolution reaction. Electrochim Acta, 2016, 220: 322–330CrossRefGoogle Scholar
  8. 8.
    Zhang X, Xiang J, Mu C, et al. SnS2 nanoflakes anchored graphene obtained by liquid phase exfoliation and MoS2 nanosheet composites as lithium and sodium battery anodes. Electrochim Acta, 2017, 227: 203–209CrossRefGoogle Scholar
  9. 9.
    Liang C, Li Z, Dai S. Mesoporous carbon materials: synthesis and modification. Angew Chem Int Ed, 2008, 47: 3696–3717CrossRefGoogle Scholar
  10. 10.
    Frackowiak E, Béguin F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon, 2001, 39: 937–950CrossRefGoogle Scholar
  11. 11.
    Balandin AA. Thermal properties of graphene and nanostructured carbon materials. Nat Mater, 2011, 10: 569–581CrossRefGoogle Scholar
  12. 12.
    Zhang T, He C, Sun F, et al. Co3O4 nanoparticles anchored on nitrogen-doped reduced graphene oxide as a multifunctional catalyst for H2O2 reduction, oxygen reduction and evolution reaction. Sci Rep, 2017, 7: 43638CrossRefGoogle Scholar
  13. 13.
    Jović BM, Lačnjevac U, Jović VD, et al. Ni-(Ebonex-supported Ir) composite coatings as electrocatalysts for alkaline water electrolysis. Part II: Oxygen evolution. Int J Hydrogen Energ, 2016, 41: 20502–20514Google Scholar
  14. 14.
    Li H, Wang Y, Na H, et al. Rechargeable Ni-Li battery integrated aqueous/nonaqueous system. J Am Chem Soc, 2009, 131: 15098–15099CrossRefGoogle Scholar
  15. 15.
    Stacy J, Regmi YN, Leonard B, et al. The recent progress and future of oxygen reduction reaction catalysis: a review. Renew Sustain Energ Rev, 2017, 69: 401–414CrossRefGoogle Scholar
  16. 16.
    Konopka A, Oliver L, Jr. RFT. The use of carbon substrate utilization patterns in environmental and ecological microbiology. Microbial Ecology, 1998, 35: 103–115Google Scholar
  17. 17.
    Faunce TA, Lubitz W, Rutherford AWB, et al. Energy and environment policy case for a global project on artificial photosynthesis. Energ Environ Sci, 2013, 6: 695–698CrossRefGoogle Scholar
  18. 18.
    Wang X, Li X, Sun X, et al. Nanostructured NiO electrode for high rate Li-ion batteries. J Mater Chem, 2011, 21: 3571–3573CrossRefGoogle Scholar
  19. 19.
    Lu Q, Lattanzi MW, Chen Y, et al. Supercapacitor electrodes with high-energy and power densities prepared from monolithic NiO/Ni nanocomposites. Angew Chem Int Ed, 2011, 50: 6847–6850CrossRefGoogle Scholar
  20. 20.
    Dong Y, Liu M, Liu Y, et al. Molybdenum-doped mesoporous carbon/graphene composites as efficient electrocatalysts for the oxygen reduction reaction. J Mater Chem A, 2015, 3: 19969–19973CrossRefGoogle Scholar
  21. 21.
    Yang H, Liu J, Wang J, et al. Electrocatalytically active graphene supported MMo carbides (M=Ni, Co) for oxygen reduction reaction. Electrochim Acta, 2016, 216: 246–252CrossRefGoogle Scholar
  22. 22.
    Zheng Y, Jiao Y, Ge L, et al. Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis. Angew Chem Int Ed, 2013, 52: 3110–3116CrossRefGoogle Scholar
  23. 23.
    Song W, Ren Z, Chen SY, et al. Ni- and Mn-promoted mesoporous Co3O4: a stable bifunctional catalyst with surface-structure-dependent activity for oxygen reduction reaction and oxygen evolution reaction. ACS Appl Mater Interfaces, 2016, 8: 20802–20813CrossRefGoogle Scholar
  24. 24.
    Aijaz A, Masa J, Rösler C, et al. Co@Co3O4 encapsulated in carbon nanotube-grafted nitrogen-doped carbon polyhedra as an advanced bifunctional oxygen electrode. Angew Chem Int Ed, 2016, 55: 4087–4091CrossRefGoogle Scholar
  25. 25.
    Pérez-Alonso FJ, Adán C, Rojas S, et al. Ni/Fe electrodes prepared by electrodeposition method over different substrates for oxygen evolution reaction in alkaline medium. Int J Hydrogen Energ, 2014, 39: 5204–5212CrossRefGoogle Scholar
  26. 26.
    Masa J, Weide P, Peeters D, et al. Amorphous cobalt boride (Co2B) as a highly efficient nonprecious catalyst for electrochemical water splitting: oxygen and hydrogen evolution. Adv Energ Mater, 2016, 6: 1502313CrossRefGoogle Scholar
  27. 27.
    Li X, Dhanabalan A, Bechtold K, et al. Binder-free porous core–shell structured Ni/NiO configuration for application of high performance lithium ion batteries. Electrochem Commun, 2010, 12: 1222–1225CrossRefGoogle Scholar
  28. 28.
    Sun X, Si W, Liu X, et al. Multifunctional Ni/NiO hybrid nanomembranes as anode materials for high-rate Li-ion batteries. Nano Energ, 2014, 9: 168–175CrossRefGoogle Scholar
  29. 29.
    Guo S, Liu W, Meng H, et al. Exchange bias and its training effect in Ni/NiO nanocomposites. J Alloys Compd, 2010, 497: 10–13CrossRefGoogle Scholar
  30. 30.
    Liang Z, Huo R, Yin YX, et al. Carbon-supported Ni@NiO/Al2O3 integrated nanocomposite derived from layered double hydroxide precursor as cycling-stable anode materials for lithium-ion batteries. Electrochim Acta, 2013, 108: 429–434CrossRefGoogle Scholar
  31. 31.
    Arico E, Tabuti F, Fonseca FC, et al. Carbothermal reduction of the YSZ–NiO solid oxide fuel cell anode precursor by carbon-based materials. J Therm Anal Calorim, 2009, 97: 157–161CrossRefGoogle Scholar
  32. 32.
    Lv W, Xiang J, Wen F, et al. Chemical vapor synthesized WS2-embedded polystyrene-derived porous carbon as superior longterm cycling life anode material for li-ion batteries. Electrochim Acta, 2015, 153: 49–54CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Dongyang Xu (徐冬阳)
    • 1
  • Congpu Mu (牟从普)
    • 2
    Email author
  • Bochong Wang (王博肿)
    • 2
  • Jianyong Xiang (向建勇)
    • 1
  • Wenjun Ruan (阮文君)
    • 1
  • Fusheng Wen (温福昇)
    • 1
    Email author
  • Xia Du (杜夏)
    • 1
  • Zhongyuan Liu (柳忠元)
    • 1
    Email author
  • Yongjun Tian (田永君)
    • 1
  1. 1.State Key Laboratory of Metastable Materials Science and TechnologyYanshan UniversityQinhuangdaoChina
  2. 2.Hebei Key Laboratory of Microstructure Material PhysicsYanshan UniversityQinhuangdaoChina

Personalised recommendations