Advanced carbon materials for flexible and wearable sensors

碳材料基柔性可穿戴传感器

Abstract

Flexible and wearable sensors have drawn extensive concern due to their wide potential applications in wearable electronics and intelligent robots. Flexible sensors with high sensitivity, good flexibility, and excellent stability are highly desirable for monitoring human biomedical signals, movements and the environment. The active materials and the device structures are the keys to achieve high performance. Carbon nanomaterials, including carbon nanotubes (CNTs), graphene, carbon black and carbon nanofibers, are one of the most commonly used active materials for the fabrication of high-performance flexible sensors due to their superior properties. Especially, CNTs and graphene can be assembled into various multi-scaled macroscopic structures, including one dimensional fibers, two dimensional films and three dimensional architectures, endowing the facile design of flexible sensors for wide practical applications. In addition, the hybrid structured carbon materials derived from natural bio-materials also showed a bright prospect for applications in flexible sensors. This review provides a comprehensive presentation of flexible and wearable sensors based on the above various carbon materials. Following a brief introduction of flexible sensors and carbon materials, the fundamentals of typical flexible sensors, such as strain sensors, pressure sensors, temperature sensors and humidity sensors, are presented. Then, the latest progress of flexible sensors based on carbon materials, including the fabrication processes, performance and applications, are summarized. Finally, the remaining major challenges of carbon-based flexible electronics are discussed and the future research directions are proposed.

摘要

摘要近年来, 柔性传感器因其在可穿戴电子设备和智能系统中的广阔应用前景而备受关注. 柔性可穿戴传感器具有高灵敏度、 良好的 机械柔性、 优异的稳定性、 人体友好性等特点, 在人体运动与生理信号监测、 环境因素检测等方面具有极大的应用潜力. 一般而言, 柔性 传感器的性能主要取决于敏感材料的选择与器件的结构设计. 得益于其优异的性能和灵活多样的组装结构与形貌>碳材料是目前应用最 广泛的敏感材料之一. 根据需求, 纳米碳材料可组装为各类宏观结枸, 比如一维的纤维, 二维的薄膜和三维的块体结构>从而可用于制备各 种柔性传感器以适应不同的需求.此外, 通过规模化、 低成本的高温碳化工艺可以将天然生物质材料转化为柔性、 导电碳材料, 并用于高 性能柔性传慼器制备. 本文针对碳材料在柔性器件中的应用, 综述了各类碳材料的制备方法与结构特点,并重点介绍了其柔性可穿戴传慼 器的制备与性能. 第一部分简要介绍了柔性传感器与碳材料; 第二部分概述了四类典型柔性传感器的工作原理与性能特点; 第三部分详细 综述了一维、 二维和三维碳材料的制备方法与其在柔性传感器的组装、 性能与应用方面的最新研究进展; 最后, 总结了碳基柔性传感器 领域的发展现状, 讨论了该领域所面临的挑战及其未来前景.

References

  1. 1

    Amjadi M, Kyung KU, Park I, et al. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv Funct Mater, 2016, 26: 1678–1698

    Article  Google Scholar 

  2. 2

    Chen K, Gao W, Emaminejad S, et al. Printed carbon nanotube electronics and sensor systems. Adv Mater, 2016, 28: 4397–4414

    Article  Google Scholar 

  3. 3

    Choi S, Lee H, Ghaffari R, et al. Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv Mater, 2016, 28: 4203–4218

    Article  Google Scholar 

  4. 4

    Hammock ML, Chortos A, Tee BCK, et al. 25th anniversary article: the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv Mater, 2013, 25: 5997–6038

    Article  Google Scholar 

  5. 5

    Rim YS, Bae SH, Chen H, et al. Recent progress in materials and devices toward printable and flexible sensors. Adv Mater, 2016, 28: 4415–4440

    Article  Google Scholar 

  6. 6

    Zang Y, Zhang F, Di C, et al. Advances of flexible pressure sensors toward artificial intelligence and health care applications. Mater Horiz, 2015, 2: 140–156

    Article  Google Scholar 

  7. 7

    McEvoy MA, Correll N. Materials that couple sensing, actuation, computation, and communication. Science, 2015, 347: 1261689–1261689

    Article  Google Scholar 

  8. 8

    Trung TQ, Lee NE. Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal healthcare. Adv Mater, 2016, 28: 4338–4372

    Article  Google Scholar 

  9. 9

    Wang X, Liu Z, Zhang T. Flexible sensing electronics for wearable/attachable health monitoring. Small, 2017, 13: 1602790

    Article  Google Scholar 

  10. 10

    Yang Y, Yang X, Tan Y, et al. Recent progress in flexible and wearable bio-electronics based on nanomaterials. Nano Res, 2017, 10: 1560–1583

    Article  Google Scholar 

  11. 11

    Yamada T, Hayamizu Y, Yamamoto Y, et al. A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotech, 2011, 6: 296–301

    Article  Google Scholar 

  12. 12

    Cai L, Song L, Luan P, et al. Super-stretchable, transparent carbon nanotube-based capacitive strain sensors for human motion detection. Sci Rep, 2013, 3: 3048

    Article  Google Scholar 

  13. 13

    Wang Y, Wang L, Yang T, et al. Wearable and highly sensitive graphene strain sensors for human motion monitoring. Adv Funct Mater, 2014, 24: 4666–4670

    Article  Google Scholar 

  14. 14

    Kim KK, Hong S, Cho HM, et al. Highly sensitive and stretchable multidimensional strain sensor with prestrained anisotropic metal nanowire percolation networks. Nano Lett, 2015, 15: 5240–5247

    Article  Google Scholar 

  15. 15

    Wang Y, Yang T, Lao J, et al. Ultra-sensitive graphene strain sensor for sound signal acquisition and recognition. Nano Res, 2015, 8: 1627–1636

    Article  Google Scholar 

  16. 16

    Schwartz G, Tee BCK, Mei J, et al. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat Commun, 2013, 4: 1859

    Article  Google Scholar 

  17. 17

    Dagdeviren C, Su Y, Joe P, et al. Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring. Nat Commun, 2014, 5: 4496

    Article  Google Scholar 

  18. 18

    Bae GY, Pak SW, Kim D, et al. Linearly and highly pressuresensitive electronic skin based on a bioinspired hierarchical structural array. Adv Mater, 2016, 28: 5300–5306

    Article  Google Scholar 

  19. 19

    Ha-Chul Jung, Jin-Hee Moon, Dong-Hyun Baek, et al. CNT/PDMS composite flexible dry electrodesfor long-term ECG monitoring. IEEE Trans Biomed Eng, 2012, 59: 1472–1479

    Article  Google Scholar 

  20. 20

    Choi M, Jeong JJ, Kim SH, et al. Reduction of motion artifacts and improvement of R peak detecting accuracy using adjacent non-intrusive ECG sensors. Sensors, 2016, 16: 715

    Article  Google Scholar 

  21. 21

    You I, Kim B, Park J, et al. Stretchable e-skin apexcardiogram sensor. Adv Mater, 2016, 28: 6359–6364

    Article  Google Scholar 

  22. 22

    Atalay O, Kennon WR, Demirok E. Weft-knitted strain sensor for monitoring respiratory rate and its electro-mechanical modeling. IEEE Sensors J, 2015, 15: 110–122

    Article  Google Scholar 

  23. 23

    Zhao F, Cheng H, Zhang Z, et al. Direct power generation from a graphene oxide film under moisture. Adv Mater, 2015, 27: 4351–4357

    Article  Google Scholar 

  24. 24

    Khan Y, Ostfeld AE, Lochner CM, et al. Monitoring of vital signs with flexible and wearable medical devices. Adv Mater, 2016, 28: 4373–4395

    Article  Google Scholar 

  25. 25

    Ren X, Pei K, Peng B, et al. A low-operating-power and flexible active-matrix organic-transistor temperature-sensor array. Adv Mater, 2016, 28: 4832–4838

    Article  Google Scholar 

  26. 26

    Zhao H, Zhang Y, Bradford PD, et al. Carbon nanotube yarn strain sensors. Nanotechnology, 2010, 21: 305502

    Article  Google Scholar 

  27. 27

    Jung S, Kim JH, Kim J, et al. Reverse-micelle-induced porous pressure-sensitive rubber for wearable human-machine interfaces. Adv Mater, 2014, 26: 4825–4830

    Article  Google Scholar 

  28. 28

    Amjadi M, Yoon YJ, Park I. Ultra-stretchable and skin-mountable strain sensors using carbon nanotubes-ecoflex nanocomposites. Nanotechnology, 2015, 26: 375501

    Article  Google Scholar 

  29. 29

    Chou HH, Nguyen A, Chortos A, et al. A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing. Nat Commun, 2015, 6: 8011

    Article  Google Scholar 

  30. 30

    Cai G, Wang J, Qian K, et al. Extremely stretchable strain sensors based on conductive self-healing dynamic cross-links hydrogels for human-motion detection. Adv Sci, 2017, 4: 1600190

    Article  Google Scholar 

  31. 31

    He Q, Sudibya HG, Yin Z, et al. Centimeter-long and large-scale micropatterns of reduced graphene oxide films: fabrication and sensing applications. ACS Nano, 2010, 4: 3201–3208

    Article  Google Scholar 

  32. 32

    Chen Z, Ming T, Goulamaly MM, et al. Enhancing the sensitivity of percolative graphene films for flexible and transparent pressure sensor arrays. Adv Funct Mater, 2016, 26: 5061–5067

    Article  Google Scholar 

  33. 33

    Trung TQ, Tien NT, Kim D, et al. A flexible reduced graphene oxide field-effect transistor for ultrasensitive strain sensing. Adv Funct Mater, 2014, 24: 117–124

    Article  Google Scholar 

  34. 34

    Huang X, Qi X, Boey F, et al. Graphene-based composites. Chem Soc Rev, 2012, 41: 666–686

    Article  Google Scholar 

  35. 35

    He Q, Wu S, Yin Z, et al. Graphene-based electronic sensors. Chem Sci, 2012, 3: 1764

    Article  Google Scholar 

  36. 36

    Kenry, Yeo JC, Yu J, et al. Highly flexible graphene oxide nanosuspension liquid-based microfluidic tactile sensor. Small, 2016, 12: 1593–1604

    Article  Google Scholar 

  37. 37

    Chi H, Liu YJ, Wang FK, et al. Highly sensitive and fast response colorimetric humidity sensors based on graphene oxides film. ACS Appl Mater Interfaces, 2015, 7: 19882–19886

    Article  Google Scholar 

  38. 38

    Wang X, Qiu Y, Cao W, et al. Highly stretchable and conductive core-sheath chemical vapor deposition graphene fibers and their applications in safe strain sensors. Chem Mater, 2015, 27: 6969–6975

    Article  Google Scholar 

  39. 39

    He Q, Wu S, Gao S, et al. Transparent, flexible, all-reduced graphene oxide thin film transistors. ACS Nano, 2011, 5: 5038–5044

    Article  Google Scholar 

  40. 40

    Sun Q, Kim DH, Park SS, et al. Transparent, low-power pressure sensor matrix based on coplanar-gate graphene transistors. Adv Mater, 2014, 26: 4735–4740

    Article  Google Scholar 

  41. 41

    Mattmann C, Clemens F, Tröster G. Sensor for measuring strain in textile. Sensors, 2008, 8: 3719–3732

    Article  Google Scholar 

  42. 42

    Wang L, Ding T, Wang P. Thin flexible pressure sensor array based on carbon black/silicone rubber nanocomposite. IEEE Sensors J, 2009, 9: 1130–1135

    Article  Google Scholar 

  43. 43

    Lin Shu, Tao Hua, Yangyong Wang, et al. In-shoe plantar pressure measurement and analysis system based on fabric pressure sensing array. IEEE Trans Inform Technol Biomed, 2010, 14: 767–775

    Article  Google Scholar 

  44. 44

    Yi W, Wang Y, Wang G, et al. Investigation of carbon black/silicone elastomer/dimethylsilicone oil composites for flexible strain sensors. Polymer Testing, 2012, 31: 677–684

    Article  Google Scholar 

  45. 45

    Wu X, Han Y, Zhang X, et al. Large-area compliant, low-cost, and versatile pressure-sensing platform based on microcrack-designed carbon black@polyurethane sponge for human-machine interfacing. Adv Funct Mater, 2016, 26: 6246–6256

    Article  Google Scholar 

  46. 46

    Sun B, Long YZ, Liu SL, et al. Fabrication of curled conducting polymer microfibrous arrays via a novel electrospinning method for stretchable strain sensors. Nanoscale, 2013, 5: 7041–7045

    Article  Google Scholar 

  47. 47

    Pan L, Chortos A, Yu G, et al. An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nat Commun, 2014, 5: 3002

    Google Scholar 

  48. 48

    Savagatrup S, Chan E, Renteria-Garcia SM, et al. Plasticization of PEDOT:PSS by common additives for mechanically robust organic solar cells and wearable sensors. Adv Funct Mater, 2015, 25: 427–436

    Article  Google Scholar 

  49. 49

    Tee BCK, Wang C, Allen R, et al. An electrically and mechanically self-healing composite with pressure-and flexion-sensitive properties for electronic skin applications. Nat Nanotech, 2012, 7: 825–832

    Article  Google Scholar 

  50. 50

    Amjadi M, Pichitpajongkit A, Lee S, et al. Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano, 2014, 8: 5154–5163

    Article  Google Scholar 

  51. 51

    Gong S, Schwalb W, Wang Y, et al. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat Commun, 2014, 5: 3132

    Google Scholar 

  52. 52

    Kang D, Pikhitsa PV, Choi YW, et al. Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature, 2014, 516: 222–226

    Article  Google Scholar 

  53. 53

    Lee J, Kim S, Lee J, et al. A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection. Nanoscale, 2014, 6: 11932–11939

    Article  Google Scholar 

  54. 54

    Gerratt AP, Michaud HO, Lacour SP. Elastomeric electronic skin for prosthetic tactile sensation. Adv Funct Mater, 2015, 25: 2287–2295

    Article  Google Scholar 

  55. 55

    Su B, Gong S, Ma Z, et al. Mimosa-inspired design of a flexible pressure sensor with touch sensitivity. Small, 2015, 11: 1886–1891

    Article  Google Scholar 

  56. 56

    Wu W, Wen X, Wang ZL. Taxel-addressable matrix of verticalnanowire piezotronic transistors for active and adaptive tactile imaging. Science, 2013, 340: 952–957

    Article  Google Scholar 

  57. 57

    Ha M, Lim S, Park J, et al. Bioinspired interlocked and hierarchical design of ZnO nanowire arrays for static and dynamic pressure-sensitive electronic skins. Adv Funct Mater, 2015, 25: 2841–2849

    Article  Google Scholar 

  58. 58

    Segevbar M, Haick H. Flexible sensors based on nanoparticles. ACS Nano, 2013, 7: 8366–8378

    Article  Google Scholar 

  59. 59

    Xia K, Jian M, Zhang Y. Advances in wearable and flexible conductors based on nanocarbon materials. Acta Phys-Chim Sin, 2016, 32: 2427–2446

    Google Scholar 

  60. 60

    Lu W, Zu M, Byun JH, et al. State of the art of carbon nanotube fibers: opportunities and challenges. Adv Mater, 2012, 24: 1805–1833

    Article  Google Scholar 

  61. 61

    Meng F, Lu W, Li Q, et al. Graphene-based fibers: a review. Adv Mater, 2015, 27: 5113–5131

    Article  Google Scholar 

  62. 62

    Du J, Pei S, Ma L, et al. 25th anniversary article: carbon nanotubeand graphene-based transparent conductive films for optoelectronic devices. Adv Mater, 2014, 26: 1958–1991

    Article  Google Scholar 

  63. 63

    Sun DM, Liu C, Ren WC, et al. A review of carbon nanotube-and graphene-based flexible thin-film transistors. Small, 2013, 9: 1188–1205

    Article  Google Scholar 

  64. 64

    Du R, Zhao Q, Zhang N, et al. Macroscopic carbon nanotubebased 3D monoliths. Small, 2015, 11: 3263–3289

    Article  Google Scholar 

  65. 65

    Li Z, Liu Z, Sun H, et al. Superstructured assembly of nanocarbons: fullerenes, nanotubes, and graphene. Chem Rev, 2015, 115: 7046–7117

    Article  Google Scholar 

  66. 66

    Zhang Q, Huang JQ, Qian WZ, et al. The road for nanomaterials industry: a review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage. Small, 2013, 9: 1237–1265

    Article  Google Scholar 

  67. 67

    Luo N, Dai W, Li C, et al. Flexible piezoresistive sensor patch enabling ultralow power cuffless blood pressure measurement. Adv Funct Mater, 2016, 26: 1178–1187

    Article  Google Scholar 

  68. 68

    Wang C, Li X, Gao E, et al. Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensors. Adv Mater, 2016, 28: 6640–6648

    Article  Google Scholar 

  69. 69

    Zhang M, Wang C, Wang H, et al. Carbonized cotton fabric for high-performance wearable strain sensors. Adv Funct Mater, 2017, 27: 1604795

    Article  Google Scholar 

  70. 70

    Wang C, Zhang M, Xia K, et al. Intrinsically stretchable and conductive textile by a scalable process for elastic wearable electronics. ACS Appl Mater Interfaces, 2017, 9: 13331–13338

    Article  Google Scholar 

  71. 71

    Yan C, Wang J, Kang W, et al. Highly stretchable piezoresistive graphene-nanocellulose nanopaper for strain sensors. Adv Mater, 2014, 26: 2022–2027

    Article  Google Scholar 

  72. 72

    Kim T, Park J, Sohn J, et al. Bioinspired, highly stretchable, and conductive dry adhesives based on 1D-2D hybrid carbon nanocomposites for all-in-one ecg electrodes. ACS Nano, 2016, 10: 4770–4778

    Article  Google Scholar 

  73. 73

    Lim S, Son D, Kim J, et al. Transparent and stretchable interactive human machine interface based on patterned graphene heterostructures. Adv Funct Mater, 2015, 25: 375–383

    Article  Google Scholar 

  74. 74

    Li YL, Kinloch IA, Windle AH. Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science, 2004, 304: 276–278

    Article  Google Scholar 

  75. 75

    Xu Z, Liu Y, Zhao X, et al. Ultrastiff and strong graphene fibers via full-scale synergetic defect engineering. Adv Mater, 2016, 28: 6449–6456

    Article  Google Scholar 

  76. 76

    Zhang M, Huang L, Chen J, et al. Ultratough, ultrastrong, and highly conductive graphene films with arbitrary sizes. Adv Mater, 2014, 26: 7588–7592

    Article  Google Scholar 

  77. 77

    Gui X, Wei J, Wang K, et al. Carbon nanotube sponges. Adv Mater, 2010, 22: 617–621

    Article  Google Scholar 

  78. 78

    Sun H, Xu Z, Gao C. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv Mater, 2013, 25: 2554–2560

    Article  Google Scholar 

  79. 79

    Wang X, Gu Y, Xiong Z, et al. Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv Mater, 2014, 26: 1336–1342

    Article  Google Scholar 

  80. 80

    Trung TQ, Ramasundaram S, Hwang BU, et al. An all-elastomeric transparent and stretchable temperature sensor for bodyattachable wearable electronics. Adv Mater, 2016, 28: 502–509

    Article  Google Scholar 

  81. 81

    Yan C, Wang J, Lee PS. Stretchable graphene thermistor with tunable thermal index. ACS Nano, 2015, 9: 2130–2137

    Article  Google Scholar 

  82. 82

    Han DD, Zhang YL, Jiang HB, et al. Moisture-responsive graphene paper prepared by self-controlled photoreduction. Adv Mater, 2015, 27: 332–338

    Article  Google Scholar 

  83. 83

    Zhao J, He C, Yang R, et al. Ultra-sensitive strain sensors based on piezoresistive nanographene films. Appl Phys Lett, 2012, 101: 063112

    Article  Google Scholar 

  84. 84

    Zhao J, Wang G, Yang R, et al. Tunable piezoresistivity of nanographene films for strain sensing. ACS Nano, 2015, 9: 1622–1629

    Article  Google Scholar 

  85. 85

    Lipomi DJ, Vosgueritchian M, Tee BCK, et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat Nanotech, 2011, 6: 788–792

    Article  Google Scholar 

  86. 86

    Yao S, Zhu Y. Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale, 2014, 6: 2345–2352

    Article  Google Scholar 

  87. 87

    Sun Q, Seung W, Kim BJ, et al. Active matrix electronic skin strain sensor based on piezopotential-powered graphene transistors. Adv Mater, 2015, 27: 3411–3417

    Article  Google Scholar 

  88. 88

    Zhou J, Gu Y, Fei P, et al. Flexible piezotronic strain sensor. Nano Lett, 2008, 8: 3035–3040

    Article  Google Scholar 

  89. 89

    Chen S, Lou Z, Chen D, et al. Highly flexible strain sensor based on ZnO nanowires and P(VDF-TrFE) fibers for wearable electronic device. Sci China Mater, 2016, 59: 173–181

    Article  Google Scholar 

  90. 90

    Li X, Zhang R, Yu W, et al. Stretchable and highly sensitive graphene-on-polymer strain sensors. Sci Rep, 2012, 2: 870

    Article  Google Scholar 

  91. 91

    Rahimi R, Ochoa M, Yu W, et al. Highly stretchable and sensitive unidirectional strain sensor via laser carbonization. ACS Appl Mater Interfaces, 2015, 7: 4463–4470

    Article  Google Scholar 

  92. 92

    Tang Y, Zhao Z, Hu H, et al. Highly stretchable and ultrasensitive strain sensor based on reduced graphene oxide microtubeselastomer composite. ACS Appl Mater Interfaces, 2015, 7: 27432–27439

    Article  Google Scholar 

  93. 93

    Yang T, Wang W, Zhang H, et al. Tactile sensing system based on arrays of graphene woven microfabrics: electromechanical behavior and electronic skin application. ACS Nano, 2015, 9: 10867–10875

    Article  Google Scholar 

  94. 94

    Ho DH, Sun Q, Kim SY, et al. Stretchable and multimodal all graphene electronic skin. Adv Mater, 2016, 28: 2601–2608

    Article  Google Scholar 

  95. 95

    Song Y, Lee JI, Pyo S, et al. A highly sensitive flexible strain sensor based on the contact resistance change of carbon nanotube bundles. Nanotechnology, 2016, 27: 205502

    Article  Google Scholar 

  96. 96

    Ryu S, Lee P, Chou JB, et al. Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion. ACS Nano, 2015, 9: 5929–5936

    Article  Google Scholar 

  97. 97

    Choi C, Lee JM, Kim SH, et al. Twistable and stretchable sandwich structured fiber for wearable sensors and supercapacitors. Nano Lett, 2016, 16: 7677–7684

    Article  Google Scholar 

  98. 98

    Samad YA, Li Y, Schiffer A, et al. Graphene foam developed with a novel two-step technique for low and high strains and pressuresensing applications. Small, 2015, 11: 2380–2385

    Article  Google Scholar 

  99. 99

    Zhao S, Gao Y, Li J, et al. Layer-by-layer assembly of multifunctional porous N-doped carbon nanotube hybrid architectures for flexible conductors and beyond. ACS Appl Mater Interfaces, 2015, 7: 6716–6723

    Article  Google Scholar 

  100. 100

    Lee Y, Bae S, Jang H, et al. Wafer-scale synthesis and transfer of graphene films. Nano Lett, 2010, 10: 490–493

    Article  Google Scholar 

  101. 101

    Tian H, Shu Y, Cui YL, et al. Scalable fabrication of high-performance and flexible graphene strain sensors. Nanoscale, 2014, 6: 699–705

    Article  Google Scholar 

  102. 102

    Qin Y, Peng Q, Ding Y, et al. Lightweight, superelastic, and mechanically flexible graphene/polyimide nanocomposite foam for strain sensor application. ACS Nano, 2015, 9: 8933–8941

    Article  Google Scholar 

  103. 103

    Luo S, Hoang PT, Liu T. Direct laser writing for creating porous graphitic structures and their use for flexible and highly sensitive sensor and sensor arrays. Carbon, 2016, 96: 522–531

    Article  Google Scholar 

  104. 104

    Lin Y, Dong X, Liu S, et al. Graphene-elastomer composites with segregated nanostructured network for liquid and strain sensing application. ACS Appl Mater Interfaces, 2016, 8: 24143–24151

    Article  Google Scholar 

  105. 105

    Lin Y, Liu S, Chen S, et al. A highly stretchable and sensitive strain sensor based on graphene-elastomer composites with a novel double-interconnected network. J Mater Chem C, 2016, 4: 6345–6352

    Article  Google Scholar 

  106. 106

    Park S, Kim H, Vosgueritchian M, et al. Stretchable energy-harvesting tactile electronic skin capable of differentiating multiple mechanical stimuli modes. Adv Mater, 2014, 26: 7324–7332

    Article  Google Scholar 

  107. 107

    Li C, Cui YL, Tian GL, et al. Flexible CNT-array double helices Strain Sensor with high stretchability for Motion Capture. Sci Rep, 2015, 5: 15554

    Article  Google Scholar 

  108. 108

    Liu ZF, Fang S, Moura FA, et al. Hierarchically buckled sheathcore fibers for superelastic electronics, sensors, and muscles. Science, 2015, 349: 400–404

    Article  Google Scholar 

  109. 109

    Roh E, Hwang BU, Kim D, et al. Stretchable, transparent, ultrasensitive, and patchable strain sensor for human-machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers. ACS Nano, 2015, 9: 6252–6261

    Article  Google Scholar 

  110. 110

    Wang H, Liu Z, Ding J, et al. Downsized sheath-core conducting fibers for weavable superelastic wires, biosensors, supercapacitors, and strain sensors. Adv Mater, 2016, 28: 4998–5007

    Article  Google Scholar 

  111. 111

    Fu XW, Liao ZM, Zhou JX, et al. Strain dependent resistance in chemical vapor deposition grown graphene. Appl Phys Lett, 2011, 99: 213107

    Article  Google Scholar 

  112. 112

    Bae SH, Lee Y, Sharma BK, et al. Graphene-based transparent strain sensor. Carbon, 2013, 51: 236–242

    Article  Google Scholar 

  113. 113

    Du D, Li P, Ouyang J. Graphene coated nonwoven fabrics as wearable sensors. J Mater Chem C, 2016, 4: 3224–3230

    Article  Google Scholar 

  114. 114

    Nam SH, Jeon PJ, Min SW, et al. Highly sensitive non-classical strain gauge using organic heptazole thin-film transistor circuit on a flexible substrate. Adv Funct Mater, 2014, 24: 4413–4419

    Article  Google Scholar 

  115. 115

    Zhang Z, Liao Q, Zhang X, et al. Highly efficient piezotronic strain sensors with symmetrical Schottky contacts on the monopolar surface of ZnO nanobelts. Nanoscale, 2015, 7: 1796–1801

    Article  Google Scholar 

  116. 116

    Luo S, Liu T. SWCNT/graphite nanoplatelet hybrid thin films for self-temperature-compensated, highly sensitive, and extensible piezoresistive sensors. Adv Mater, 2013, 25: 5650–5657

    Article  Google Scholar 

  117. 117

    Shi J, Li X, Cheng H, et al. Graphene reinforced carbon nanotube networks for wearable strain sensors. Adv Funct Mater, 2016, 26: 2078–2084

    Article  Google Scholar 

  118. 118

    Park J, Lee Y, Hong J, et al. Tactile-direction-sensitive and stretchable electronic skins based on human-skin-inspired interlocked microstructures. ACS Nano, 2014, 8: 12020–12029

    Article  Google Scholar 

  119. 119

    Park J, Lee Y, Hong J, et al. Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins. ACS Nano, 2014, 8: 4689–4697

    Article  Google Scholar 

  120. 120

    Yeom C, Chen K, Kiriya D, et al. Large-area compliant tactile sensors using printed carbon nanotube active-matrix backplanes. Adv Mater, 2015, 27: 1561–1566

    Article  Google Scholar 

  121. 121

    Hou C, Wang H, Zhang Q, et al. Highly conductive, flexible, and compressible all-graphene passive electronic skin for sensing human touch. Adv Mater, 2014, 26: 5018–5024

    Article  Google Scholar 

  122. 122

    Zhu B, Niu Z, Wang H, et al. Microstructured graphene arrays for highly sensitive flexible tactile sensors. Small, 2014, 10: 3625–3631

    Article  Google Scholar 

  123. 123

    Tian H, Shu Y, Wang XF, et al. A graphene-based resistive pressure sensor with record-high sensitivity in a wide pressure range. Sci Rep, 2015, 5: 8603

    Article  Google Scholar 

  124. 124

    Tang Y, Gong S, Chen Y, et al. Manufacturable conducting rubber ambers and stretchable conductors from copper nanowire aerogel monoliths. ACS Nano, 2014, 8: 5707–5714

    Article  Google Scholar 

  125. 125

    Choong CL, Shim MB, Lee BS, et al. Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Adv Mater, 2014, 26: 3451–3458

    Article  Google Scholar 

  126. 126

    Zhong W, Liu Q, Wu Y, et al. A nanofiber based artificial electronic skin with high pressure sensitivity and 3D conformability. Nanoscale, 2016, 8: 12105–12112

    Article  Google Scholar 

  127. 127

    Honda W, Harada S, Arie T, et al. Wearable, human-interactive, health-monitoring, wireless devices fabricated by macroscale printing techniques. Adv Funct Mater, 2014, 24: 3299–3304

    Article  Google Scholar 

  128. 128

    Takei K, Yu Z, Zheng M, et al. Highly sensitive electronic whiskers based on patterned carbon nanotube and silver nanoparticle composite films. Proc Natl Acad Sci USA, 2014, 111: 1703–1707

    Article  Google Scholar 

  129. 129

    Pang C, Lee GY, Kim TI, et at. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat Mater, 2012, 11: 795–801

    Article  Google Scholar 

  130. 130

    Jian M, Xia K, Wang Q, et al. Flexible and highly sensitive pressure sensors based on bionic hierarchical structures. Adv Funct Mater, 2017, 27: 1606066

    Article  Google Scholar 

  131. 131

    Sheng L, Liang Y, Jiang L, et al. Bubble-decorated honeycomblike graphene film as ultrahigh sensitivity pressure sensors. Adv Funct Mater, 2015, 25: 6545–6551

    Article  Google Scholar 

  132. 132

    Wang X, Li T, Adams J, et al. Transparent, stretchable, carbonnanotube-inlaid conductors enabled by standard replication technology for capacitive pressure, strain and touch sensors. J Mater Chem A, 2013, 1: 3580

    Article  Google Scholar 

  133. 133

    Li T, Luo H, Qin L, et al. Flexible capacitive tactile sensor based on micropatterned dielectric layer. Small, 2016, 12: 5042–5048

    Article  Google Scholar 

  134. 134

    Zang Y, Zhang F, Huang D, et al. Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection. Nat Commun, 2015, 6: 6269

    Article  Google Scholar 

  135. 135

    Tien NT, Jeon S, Kim DI, et al. A flexible bimodal sensor array for simultaneous sensing of pressure and temperature. Adv Mater, 2014, 26: 796–804

    Article  Google Scholar 

  136. 136

    Tien NT, Trung TQ, Seoul YG, et al. Physically responsive fieldeffect transistors with giant electromechanical coupling induced by nanocomposite gate dielectrics. ACS Nano, 2011, 5: 7069–7076

    Article  Google Scholar 

  137. 137

    Zhang F, Zang Y, Huang D, et al. Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials. Nat Commun, 2015, 6: 8356

    Article  Google Scholar 

  138. 138

    Yang Y, Lin ZH, Hou T, et al. Nanowire-composite based flexible thermoelectric nanogenerators and self-powered temperature sensors. Nano Res, 2012, 5: 888–895

    Article  Google Scholar 

  139. 139

    Tien NT, Seol YG, Dao LHA, et al. Utilizing highly crystalline pyroelectric material as functional gate dielectric in organic thinfilm transistors. Adv Mater, 2009, 21: 910–915

    Article  Google Scholar 

  140. 140

    Jeon J, Lee HBR, Bao Z. Flexible wireless temperature sensors based on Ni microparticle-filled binary polymer composites. Adv Mater, 2013, 25: 850–855

    Article  Google Scholar 

  141. 141

    Kim DH, Lu N, Ma R, et al. Epidermal electronics. Science, 2011, 333: 838–843

    Article  Google Scholar 

  142. 142

    Yeo WH, Kim YS, Lee J, et al. Multifunctional epidermal electronics printed directly onto the skin. Adv Mater, 2013, 25: 2773–2778

    Article  Google Scholar 

  143. 143

    Son D, Lee J, Qiao S, et al. Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat Nanotech, 2014, 9: 397–404

    Article  Google Scholar 

  144. 144

    Webb RC, Bonifas AP, Behnaz A, et al. Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat Mater, 2013, 12: 938–944

    Article  Google Scholar 

  145. 145

    Feteira A. Negative temperature coefficient resistance (NTCR) ceramic thermistors: an industrial perspective. J Am Ceramic Soc, 2009, 92: 967–983

    Article  Google Scholar 

  146. 146

    Huang CC, Kao ZK, Liao YC. Flexible miniaturized nickel oxide thermistor arrays via inkjet printing technology. ACS Appl Mater Interfaces, 2013, 5: 12954–12959

    Article  Google Scholar 

  147. 147

    Honda W, Harada S, Ishida S, et al. High-performance, mechanically flexible, and vertically integrated 3D Carbon nanotube and InGaZnO complementary circuits with a temperature sensor. Adv Mater, 2015, 27: 4674–4680

    Article  Google Scholar 

  148. 148

    Matzeu G, Pucci A, Savi S, et al. A temperature sensor based on a MWCNT/SEBS nanocomposite. Sensors Actuators A-Phys, 2012, 178: 94–99

    Article  Google Scholar 

  149. 149

    Trung TQ, Ramasundaram S, Hong SW, et al. Flexible and transparent nanocomposite of reduced graphene oxide and P (VDF-TrFE) copolymer for high thermal responsivity in a fieldeffect transistor. Adv Funct Mater, 2014, 24: 3438–3445

    Article  Google Scholar 

  150. 150

    Yang J, Wei D, Tang L, et al. Wearable temperature sensor based on graphene nanowalls. RSC Adv, 2015, 5: 25609–25615

    Article  Google Scholar 

  151. 151

    Kim J, Lee M, Shim HJ, et al. Stretchable silicon nanoribbon electronics for skin prosthesis. Nat Commun, 2014, 5: 5747

    Article  Google Scholar 

  152. 152

    Gao L, Zhang Y, Malyarchuk V, et al. Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin. Nat Commun, 2014, 5: 4938

    Article  Google Scholar 

  153. 153

    Wu X, Ma Y, Zhang G, et al. Thermally stable, biocompatible, and flexible organic field-effect transistors and their application in temperature sensing arrays for artificial skin. Adv Funct Mater, 2015, 25: 2138–2146

    Article  Google Scholar 

  154. 154

    Kolpakov SA, Gordon NT, Mou C, et al. Toward a new generation of photonic humidity sensors. Sensors, 2014, 14: 3986–4013

    Article  Google Scholar 

  155. 155

    Kim SY, Park S, Park HW, et al. Highly sensitive and multimodal all-carbon skin sensors capable of simultaneously detecting tactile and biological stimuli. Adv Mater, 2015, 27: 4178–4185

    Article  Google Scholar 

  156. 156

    Yu HW, Kim HK, Kim T, et al. Self-powered humidity sensor based on graphene oxide composite film intercalated by poly (sodium 4-styrenesulfonate). ACS Appl Mater Interfaces, 2014, 6: 8320–8326

    Article  Google Scholar 

  157. 157

    Han JW, Kim B, Li J, et al. Carbon nanotube based humidity sensor on cellulose paper. J Phys Chem C, 2012, 116: 22094–22097

    Article  Google Scholar 

  158. 158

    Hwang SH, Kang D, Ruoff RS, et al. Poly(vinyl alcohol) reinforced and toughened with poly(dopamine)-treated graphene oxide, and its use for humidity sensing. ACS Nano, 2014, 8: 6739–6747

    Article  Google Scholar 

  159. 159

    Qi H, Liu J, Deng Y, et al. Cellulose fibres with carbon nanotube networks for water sensing. J Mater Chem A, 2014, 2: 5541–5547

    Article  Google Scholar 

  160. 160

    Wang Z, Xiao Y, Cui X, et al. Humidity-sensing properties of urchinlike CuO nanostructures modified by reduced graphene oxide. ACS Appl Mater Interfaces, 2014, 6: 3888–3895

    Article  Google Scholar 

  161. 161

    Alwis L, Sun T, Grattan KTV. Optical fibre-based sensor technology for humidity and moisture measurement: review of recent progress. Measurement, 2013, 46: 4052–4074

    Article  Google Scholar 

  162. 162

    Sheng L, Dajing C, Yuquan C. A surface acoustic wave humidity sensor with high sensitivity based on electrospun MWCNT/Nafion nanofiber films. Nanotechnology, 2011, 22: 265504

    Article  Google Scholar 

  163. 163

    Hsueh HT, Hsueh TJ, Chang SJ, et al. A flexible ZnO nanowirebased humidity sensor. IEEE Trans NanoTech, 2012, 11: 520–525

    Article  Google Scholar 

  164. 164

    Borini S, White R, Wei D, et al. Ultrafast graphene oxide humidity sensors. ACS Nano, 2013, 7: 11166–11173

    Article  Google Scholar 

  165. 165

    Cheng H, Hu Y, Zhao F, et al. Moisture-activated torsional graphene-fiber motor. Adv Mater, 2014, 26: 2909–2913

    Article  Google Scholar 

  166. 166

    Zhao F, Wang L, Zhao Y, et al. Graphene oxide nanoribbon assembly toward moisture-powered information storage. Adv Mater, 2017, 29: 1604972

    Article  Google Scholar 

  167. 167

    Cheng H, Liu J, Zhao Y, et al. Graphene fibers with predetermined deformation as moisture-triggered actuators and robots. Angew Chem Int Ed, 2013, 52: 10482–10486

    Article  Google Scholar 

  168. 168

    He S, Chen P, Qiu L, et al. A mechanically actuating carbonnanotube fiber in response to water and moisture. Angew Chem Int Ed, 2015, 54: 14880–14884

    Article  Google Scholar 

  169. 169

    Vigolo B. Macroscopic fibers and ribbons of oriented carbon nanotubes. Science, 2000, 290: 1331–1334

    Article  Google Scholar 

  170. 170

    Ericson LM, Fan H, Peng H, et al. Macroscopic, neat, singlewalled carbon nanotube fibers. Science, 2004, 305: 1447–1450

    Article  Google Scholar 

  171. 171

    Behabtu N, Young CC, Tsentalovich DE, et al. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science, 2013, 339: 182–186

    Article  Google Scholar 

  172. 172

    Jiang K, Li Q, Fan S. Nanotechnology: spinning continuous carbon nanotube yarns. Nature, 2002, 419: 801–801

    Article  Google Scholar 

  173. 173

    Zhang M, Atkinson KR, Baughman RH. Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science, 2004, 306: 1358–1361

    Article  Google Scholar 

  174. 174

    Zhong XH, Li YL, Liu YK, et al. Continuous multilayered carbon nanotube yarns. Adv Mater, 2010, 22: 692–696

    Article  Google Scholar 

  175. 175

    Wang JN, Luo XG, Wu T, et al. High-strength carbon nanotube fibre-like ribbon with high ductility and high electrical conductivity. Nat Commun, 2014, 5: 3848

    Google Scholar 

  176. 176

    Zhang Y, Zou G, Doorn SK, et al. Tailoring the morphology of carbon nanotube arrays: from spinnable forests to undulating foams. ACS Nano, 2009, 3: 2157–2162

    Article  Google Scholar 

  177. 177

    Zhang X, Li Q, Tu Y, et al. Strong carbon-nanotube fibers spun from long carbon-nanotube arrays. Small, 2007, 3: 244–248

    Article  Google Scholar 

  178. 178

    Koziol K, Vilatela J, Moisala A, et al. High-performance carbon nanotube fiber. Science, 2007, 318: 1892–1895

    Article  Google Scholar 

  179. 179

    Xu Z, Sun H, Zhao X, et al. Ultrastrong fibers assembled from giant graphene oxide sheets. Adv Mater, 2013, 25: 188–193

    Article  Google Scholar 

  180. 180

    Xu Z, Gao C. Graphene chiral liquid crystals and macroscopic assembled fibres. Nat Commun, 2011, 2: 571

    Article  Google Scholar 

  181. 181

    Hu C, Zhao Y, Cheng H, et al. Graphene microtubings: controlled fabrication and site-specific functionalization. Nano Lett, 2012, 12: 5879–5884

    Article  Google Scholar 

  182. 182

    Cruz-Silva R, Morelos-Gomez A, Kim HI, et al. Super-stretchable graphene oxide macroscopic fibers with outstanding knotability fabricated by dry film scrolling. ACS Nano, 2014, 8: 5959–5967

    Article  Google Scholar 

  183. 183

    Li X, Zhao T, Chen Q, et al. Flexible all solid-state supercapacitors based on chemical vapor deposition derived graphene fibers. Phys Chem Chem Phys, 2013, 15: 17752–17757

    Article  Google Scholar 

  184. 184

    Chen T, Dai L. Macroscopic graphene fibers directly assembled from CVD-grown fiber-shaped hollow graphene tubes. Angew Chem Int Ed, 2015, 54: 14947–14950

    Article  Google Scholar 

  185. 185

    Li M, Zhang X, Wang X, et al. Ultrastrong graphene-based fibers with increased elongation. Nano Lett, 2016, 16: 6511–6515

    Article  Google Scholar 

  186. 186

    Xin G, Yao T, Sun H, et al. Highly thermally conductive and mechanically strong graphene fibers. Science, 2015, 349: 1083–1087

    Article  Google Scholar 

  187. 187

    Sun H, You X, Deng J, et al. Novel graphene/carbon nanotube composite fibers for efficient wire-shaped miniature energy devices. Adv Mater, 2014, 26: 2868–2873

    Article  Google Scholar 

  188. 188

    Shang Y, Hua C, Xu W, et al. Meter-long spiral carbon nanotube fibers show ultrauniformity and flexibility. Nano Lett, 2016, 16: 1768–1775

    Article  Google Scholar 

  189. 189

    Hua C, Shang Y, Li X, et al. Helical graphene oxide fibers as a stretchable sensor and an electrocapillary sucker. Nanoscale, 2016, 8: 10659–10668

    Article  Google Scholar 

  190. 190

    Zhao F, Zhao Y, Cheng H, et al. A graphene fibriform responsor for sensing heat, humidity, and mechanical changes. Angew Chem Int Ed, 2015, 54: 14951–14955

    Article  Google Scholar 

  191. 191

    Zhong J, Zhong Q, Hu Q, et al. Stretchable self-powered fiberbased strain sensor. Adv Funct Mater, 2015, 25: 1798–1803

    Article  Google Scholar 

  192. 192

    Cheng Y, Wang R, Sun J, et al. A stretchable and highly sensitive graphene-based fiber for sensing tensile strain, bending, and torsion. Adv Mater, 2015, 27: 7365–7371

    Article  Google Scholar 

  193. 193

    Yuan W, Zhou Q, Li Y, et al. Small and light strain sensors based on graphene coated human hairs. Nanoscale, 2015, 7: 16361–16365

    Article  Google Scholar 

  194. 194

    Zhang M, Wang C, Wang Q, et al. Sheath-core graphite/silk fiber made by dry-meyer-rod-coating for wearable strain sensors. ACS Appl Mater Interfaces, 2016, 8: 20894–20899

    Article  Google Scholar 

  195. 195

    Tai Y, Lubineau G. Double-twisted conductive smart threads comprising a homogeneously and a gradient-coated thread for multidimensional flexible pressure-sensing devices. Adv Funct Mater, 2016, 26: 4078–4084

    Article  Google Scholar 

  196. 196

    Qi H, Schulz B, Vad T, et al. Novel carbon nanotube/cellulose composite fibers as multifunctional materials. ACS Appl Mater Interfaces, 2015, 7: 22404–22412

    Article  Google Scholar 

  197. 197

    Wu Z, Chen Z, Du X, et al. Transparent, conductive carbon nanotube films. Science, 2004, 305: 1273–1276

    Article  Google Scholar 

  198. 198

    Dan B, Irvin GC, Pasquali M. Continuous and scalable fabrication of transparent conducting carbon nanotube films. ACS Nano, 2009, 3: 835–843

    Article  Google Scholar 

  199. 199

    Hellstrom SL, Lee HW, Bao Z. Polymer-assisted direct deposition of uniform carbon nanotube bundle networks for high performance transparent electrodes. ACS Nano, 2009, 3: 1423–1430

    Article  Google Scholar 

  200. 200

    Tenent RC, Barnes TM, Bergeson JD, et al. Ultrasmooth, largearea, high-uniformity, conductive transparent single-walled-carbon-nanotube films for photovoltaics produced by ultrasonic spraying. Adv Mater, 2009, 21: 3210–3216

    Article  Google Scholar 

  201. 201

    Sreekumar TV, Liu T, Kumar S, et al. Single-wall carbon nanotube films. Chem Mater, 2003, 15: 175–178

    Article  Google Scholar 

  202. 202

    Okimoto H, Takenobu T, Yanagi K, et al. Tunable carbon nanotube thin-film transistors produced exclusively via inkjet printing. Adv Mater, 2010, 22: 3981–3986

    Article  Google Scholar 

  203. 203

    Shim BS, Zhu J, Jan E, et al. Transparent conductors from layerby-layer assembled swnt films: importance of mechanical properties and a new figure of merit. ACS Nano, 2010, 4: 3725–3734

    Article  Google Scholar 

  204. 204

    Wang X, Li G, Liu R, et al. Reproducible layer-by-layer exfoliation for free-standing ultrathin films of single-walled carbon nanotubes. J Mater Chem, 2012, 22: 21824

    Article  Google Scholar 

  205. 205

    Lee YD, Cho WS, Kim YC, et al. Field emission of ribonucleic acid-carbon nanotube films prepared by electrophoretic deposition. Carbon, 2012, 50: 845–850

    Article  Google Scholar 

  206. 206

    Ma W, Song L, Yang R, et al. Directly synthesized strong, highly conducting, transparent single-walled carbon nanotube films. Nano Lett, 2007, 7: 2307–2311

    Article  Google Scholar 

  207. 207

    Zhang M, Fang S, Zakhidov AA, et al. Strong, transparent, multifunctional, carbon nanotube sheets. Science, 2005, 309: 1215–1219

    Article  Google Scholar 

  208. 208

    Feng C, Liu K, Wu JS, et al. Flexible, stretchable, transparent conducting films made from superaligned carbon nanotubes. Adv Funct Mater, 2010, 20: 885–891

    Article  Google Scholar 

  209. 209

    Jiang K, Wang J, Li Q, et al. Superaligned carbon nanotube arrays, films, and yarns: a road to applications. Adv Mater, 2011, 23: 1154–1161

    Article  Google Scholar 

  210. 210

    Pint CL, Xu YQ, Pasquali M, et al. Formation of highly dense aligned ribbons and transparent films of single-walled carbon nanotubes directly from carpets. ACS Nano, 2008, 2: 1871–1878

    Article  Google Scholar 

  211. 211

    Wang D, Song P, Liu C, et al. Highly oriented carbon nanotube papers made of aligned carbon nanotubes. Nanotechnology, 2008, 19: 075609

    Article  Google Scholar 

  212. 212

    Dikin DA, Stankovich S, Zimney EJ, et al. Preparation and characterization of graphene oxide paper. Nature, 2007, 448: 457–460

    Article  Google Scholar 

  213. 213

    Jeon HG, Huh YH, Yun SH, et al. Improved homogeneity and surface coverage of graphene oxide layers fabricated by horizontal-dip-coating for solution-processable organic semiconducting devices. J Mater Chem C, 2014, 2: 2622

    Article  Google Scholar 

  214. 214

    Hempel M, Nezich D, Kong J, et al. A novel class of strain gauges based on layered percolative films of 2D materials. Nano Lett, 2012, 12: 5714–5718

    Article  Google Scholar 

  215. 215

    Wang X, Xiong Z, Liu Z, et al. Exfoliation at the liquid/air interface to assemble reduced graphene oxide ultrathin films for a flexible noncontact sensing device. Adv Mater, 2015, 27: 1370–1375

    Article  Google Scholar 

  216. 216

    Li X, Sun P, Fan L, et al. Multifunctional graphene woven fabrics. Sci Rep, 2012, 2: 395

    Article  Google Scholar 

  217. 217

    Shi E, Li H, Yang L, et al. Carbon nanotube network embroidered graphene films for monolithic all-carbon electronics. Adv Mater, 2015, 27: 682–688

    Article  Google Scholar 

  218. 218

    Guo Y, Di C, Liu H, et al. General route toward patterning of graphene oxide by a combination of wettability modulation and spin-coating. ACS Nano, 2010, 4: 5749–5754

    Article  Google Scholar 

  219. 219

    Liu Z, Li Z, Xu Z, et al. Wet-spun continuous graphene films. Chem Mater, 2014, 26: 6786–6795

    Article  Google Scholar 

  220. 220

    Chen C, Yang QH, Yang Y, et al. Self-assembled free-standing graphite oxide membrane. Adv Mater, 2009, 21: 3007–3011

    Article  Google Scholar 

  221. 221

    Shao JJ, Lv W, Yang QH. Self-assembly of graphene oxide at interfaces. Adv Mater, 2014, 26: 5586–5612

    Article  Google Scholar 

  222. 222

    Li X, Cai W, An J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 2009, 324: 1312–1314

    Article  Google Scholar 

  223. 223

    Xia K, Artyukhov VI, Sun L, et al. Growth of large-area aligned pentagonal graphene domains on high-index copper surfaces. Nano Res, 2016, 9: 2182–2189

    Article  Google Scholar 

  224. 224

    Kim KS, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009, 457: 706–710

    Article  Google Scholar 

  225. 225

    Chen XD, Chen Z, Jiang WS, et al. Fast growth and broad applications of 25-inch uniform graphene glass. Adv Mater, 2017, 29: 1603428

    Article  Google Scholar 

  226. 226

    Chen Z, Guan B, Chen X, et al. Fast and uniform growth of graphene glass using confined-flow chemical vapor deposition and its unique applications. Nano Res, 2016, 9: 3048–3055

    Article  Google Scholar 

  227. 227

    Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotech, 2010, 5: 574–578

    Article  Google Scholar 

  228. 228

    Lin J, Peng Z, Liu Y, et al. Laser-induced porous graphene films from commercial polymers. Nat Commun, 2014, 5: 5714

    Article  Google Scholar 

  229. 229

    Huang ZD, Zhang B, Oh SW, et al. Self-assembled reduced graphene oxide/carbon nanotube thin films as electrodes for supercapacitors. J Mater Chem, 2012, 22: 3591

    Article  Google Scholar 

  230. 230

    Shao JJ, Lv W, Guo Q, et al. Hybridization of graphene oxide and carbon nanotubes at the liquid/air interface. Chem Commun, 2012, 48: 3706–3708

    Article  Google Scholar 

  231. 231

    Yan Z, Peng Z, Casillas G, et al. Rebar graphene. ACS Nano, 2014, 8: 5061–5068

    Article  Google Scholar 

  232. 232

    Zhang Y, Sheehan CJ, Zhai J, et al. Polymer-embedded carbon nanotube ribbons for stretchable conductors. Adv Mater, 2010, 22: 3027–3031

    Article  Google Scholar 

  233. 233

    Guo FM, Cui X, Wang KL, et al. Stretchable and compressible strain sensors based on carbon nanotube meshes. Nanoscale, 2016, 8: 19352–19358

    Article  Google Scholar 

  234. 234

    Harada S, Honda W, Arie T, et al. Fully printed, highly sensitive multifunctional artificial electronic whisker arrays integrated with strain and temperature sensors. ACS Nano, 2014, 8: 3921–3927

    Article  Google Scholar 

  235. 235

    Harada S, Kanao K, Yamamoto Y, et al. Fully printed flexible fingerprint-like three-axis tactile and slip force and temperature sensors for artificial skin. ACS Nano, 2014, 8: 12851–12857

    Article  Google Scholar 

  236. 236

    Liu Q, Chen J, Li Y, et al. High-performance strain sensors with fish-scale-like graphene-sensing layers for full-range detection of human motions. ACS Nano, 2016, 10: 7901–7906

    Article  Google Scholar 

  237. 237

    Wang Y, Yang R, Shi Z, et al. Super-elastic graphene ripples for flexible strain sensors. ACS Nano, 2011, 5: 3645–3650

    Article  Google Scholar 

  238. 238

    Chen S, Wei Y, Yuan X, et al. A highly stretchable strain sensor based on a graphene/silver nanoparticle synergic conductive network and a sandwich structure. J Mater Chem C, 2016, 4: 4304–4311

    Article  Google Scholar 

  239. 239

    Boland CS, Khan U, Backes C, et al. Sensitive, high-strain, highrate bodily motion sensors based on graphene-rubber composites. ACS Nano, 2014, 8: 8819–8830

    Article  Google Scholar 

  240. 240

    Lu N, Lu C, Yang S, et al. Highly sensitive skin-mountable strain gauges based entirely on elastomers. Adv Funct Mater, 2012, 22: 4044–4050

    Article  Google Scholar 

  241. 241

    Wang Q, Jian M, Wang C, et al. Carbonized silk nanofiber membrane for transparent and sensitive electronic skin. Adv Funct Mater, 2017, 27: 1605657

    Article  Google Scholar 

  242. 242

    Wang DY, Tao LQ, Liu Y, et al. High performance flexible strain sensor based on self-locked overlapping graphene sheets. Nanoscale, 2016, 8: 20090–20095

    Article  Google Scholar 

  243. 243

    Tao LQ, Tian H, Liu Y, et al. An intelligent artificial throat with sound-sensing ability based on laser induced graphene. Nat Commun, 2017, 8: 14579

    Article  Google Scholar 

  244. 244

    Bryning MB, Milkie DE, Islam MF, et al. Carbon nanotube aerogels. Adv Mater, 2007, 19: 661–664

    Article  Google Scholar 

  245. 245

    Gutierrez MC, Hortiguela MJ, Amarilla JM, et al. Macroporous 3D architectures of self-assembled MWCNT surface decorated with Pt nanoparticles as anodes for a direct methanol fuel cell. J Phys Chem C, 2007, 111: 5557–5560

    Article  Google Scholar 

  246. 246

    Xie X, Ye M, Hu L, et al. Carbon nanotube-coated macroporous sponge for microbial fuel cell electrodes. Energ Environ Sci, 2012, 5: 5265–5270

    Article  Google Scholar 

  247. 247

    Hata K, Futaba DN, Mizuno K, et al. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science, 2004, 306: 1362–1364

    Article  Google Scholar 

  248. 248

    Tsuji T, Hata K, Futaba DN, et al. Unexpected efficient synthesis of millimeter-scale single-wall carbon nanotube forests using a sputtered MgO catalyst underlayer enabled by a simple treatment process. J Am Chem Soc, 2016, 138: 16608–16611

    Article  Google Scholar 

  249. 249

    Ren ZF, Huang ZP, Xu JW, et al. Synthesis of large arrays of wellaligned carbon nanotubes on glass. Science, 1998, 282: 1105–1107

    Article  Google Scholar 

  250. 250

    Fan S, Chapline MG, Franklin NR, et al. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science, 1999, 283: 512–514

    Article  Google Scholar 

  251. 251

    Xu Y, Sheng K, Li C, et al. Self-assembled graphene hydrogelvia a one-step hydrothermal process. ACS Nano, 2010, 4: 4324–4330

    Article  Google Scholar 

  252. 252

    Hu H, Zhao Z, Wan W, et al. Ultralight and highly compressible graphene aerogels. Adv Mater, 2013, 25: 2219–2223

    Article  Google Scholar 

  253. 253

    Niu Z, Liu L, Zhang L, et al. A universal strategy to prepare functional porous graphene hybrid architectures. Adv Mater, 2014, 26: 3681–3687

    Article  Google Scholar 

  254. 254

    Qiu L, Liu JZ, Chang SLY, et al. Biomimetic superelastic graphene-based cellular monoliths. Nat Commun, 2012, 3: 1241

    Article  Google Scholar 

  255. 255

    Yang ZY, Jin LJ, Lu GQ, et al. Sponge-templated preparation of high surface area graphene with ultrahigh capacitive deionization performance. Adv Funct Mater, 2014, 24: 3917–3925

    Article  Google Scholar 

  256. 256

    Chen Z, Ren W, Gao L, et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater, 2011, 10: 424–428

    Article  Google Scholar 

  257. 257

    Peng Q, Li Y, He X, et al. Graphene nanoribbon aerogels unzipped from carbon nanotube sponges. Adv Mater, 2014, 26: 3241–3247

    Article  Google Scholar 

  258. 258

    Dong X, Ma Y, Zhu G, et al. Synthesis of graphene-carbon nanotube hybrid foam and its use as a novel three-dimensional electrode for electrochemical sensing. J Mater Chem, 2012, 22: 17044

    Article  Google Scholar 

  259. 259

    Kim ND, Li Y, Wang G, et al. Growth and transfer of seamless 3D graphene-nanotube hybrids. Nano Lett, 2016, 16: 1287–1292

    Article  Google Scholar 

  260. 260

    Lin J, Zhang C, Yan Z, et al. 3-dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance. Nano Lett, 2013, 13: 72–78

    Article  Google Scholar 

  261. 261

    Tang C, Zhang Q, Zhao MQ, et al. Resilient aligned carbon nanotube/graphene sandwiches for robust mechanical energy storage. Nano Energ, 2014, 7: 161–169

    Article  Google Scholar 

  262. 262

    Wang W, Guo S, Penchev M, et al. Three dimensional few layer graphene and carbon nanotube foam architectures for high fidelity supercapacitors. Nano Energ, 2013, 2: 294–303

    Article  Google Scholar 

  263. 263

    Zhang W, Xie H, Zhang R, et al. Synthesis of three-dimensional carbon nanotube/graphene hybrid materials by a two-step chemical vapor deposition process. Carbon, 2015, 86: 358–362

    Article  Google Scholar 

  264. 264

    Boland CS, Khan U, Ryan G, et al. Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites. Science, 2016, 354: 1257–1260

    Article  Google Scholar 

  265. 265

    Chen H, Su Z, Song Y, et al. Omnidirectional bending and pressure sensor based on stretchable CNT-PU sponge. Adv Funct Mater, 2017, 27: 1604434

    Article  Google Scholar 

  266. 266

    Qiu L, Bulut Coskun M, Tang Y, et al. Ultrafast dynamic piezoresistive response of graphene-based cellular elastomers. Adv Mater, 2016, 28: 194–200

    Article  Google Scholar 

  267. 267

    Yao HB, Ge J, Wang CF, et al. A flexible and highly pressuresensitive graphene-polyurethane sponge based on fractured microstructure design. Adv Mater, 2013, 25: 6692–6698

    Article  Google Scholar 

  268. 268

    Zhao W, Li Y, Wu S, et al. Highly stable carbon nanotube/polyaniline porous network for multifunctional applications. ACS Appl Mater Interfaces, 2016, 8: 34027–34033

    Article  Google Scholar 

  269. 269

    Wang M, Anoshkin IV, Nasibulin AG, et al. Modifying native nanocellulose aerogels with carbon nanotubes for mechanoresponsive conductivity and pressure sensing. Adv Mater, 2013, 25: 2428–2432

    Article  Google Scholar 

  270. 270

    Jeong YR, Park H, Jin SW, et al. Highly stretchable and sensitive strain sensors using fragmentized graphene foam. Adv Funct Mater, 2015, 25: 4228–4236

    Article  Google Scholar 

  271. 271

    Zhang P, Lv L, Cheng Z, et al. Superelastic, macroporous polystyrene-mediated graphene aerogels for active pressure sensing. Chem Asian J, 2016, 11: 1071–1075

    Article  Google Scholar 

  272. 272

    Lin Y, Liu S, Chen S, et al. A highly stretchable and sensitive strain sensor based on graphene-elastomer composites with a novel double-interconnected network. J Mater Chem C, 2016, 4: 6345–6352

    Article  Google Scholar 

  273. 273

    Si Y, Wang X, Yan C, et al. Ultralight biomass-derived carbonaceous nanofibrous aerogels with superelasticity and high pressure-sensitivity. Adv Mater, 2016, 28: 9512–9518

    Article  Google Scholar 

  274. 274

    Bendi R, Bhavanasi V, Parida K, et al. Self-powered graphene thermistor. Nano Energ, 2016, 26: 586–594

    Article  Google Scholar 

  275. 275

    Fuh YK, Kuo CC, Huang ZM, et al. A transparent and flexible graphene-piezoelectric fiber generator. Small, 2016, 12: 1875–1881

    Article  Google Scholar 

  276. 276

    Wang X, Yang B, Liu J, et al. A flexible triboelectric-piezoelectric hybrid nanogenerator based on P(VDF-TrFE) nanofibers and PDMS/MWCNT for wearable devices. Sci Rep, 2016, 6: 36409

    Article  Google Scholar 

  277. 277

    Guo H, Yeh MH, Zi Y, et al. Ultralight cut-paper-based selfcharging power unit for self-powered portable electronic and medical systems. ACS Nano, 2017, 11: 4475–4482

    Article  Google Scholar 

  278. 278

    Hwang BU, Lee JH, Trung TQ, et al. Transparent stretchable selfpowered patchable sensor platform with ultrasensitive recognition of human activities. ACS Nano, 2015, 9: 8801–8810

    Article  Google Scholar 

  279. 279

    Luo J, Fan FR, Zhou T, et al. Ultrasensitive self-powered pressure sensing system. Extreme Mech Lett, 2015, 2: 28–36

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51672153, 51422204 and 51372132) and the National Key Basic Research and Development Program (2016YFA0200103 and 2013CB228506).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yingying Zhang 张莹莹.

Additional information

Muqiang Jian received his BS degree in chemical engineering and technology from Northwestern Polytechnical University in 2013. Now he is a PhD candidate in Prof. Yingying Zhang’s group at the Department of Chemistry and Center for Nano and Micro Mechanics of Tsinghua University. His current research is the synthesis of CNTs and their applications in flexible sensors. Yingying

Yingying Zhang received her PhD degree from Peking University in 2007. She then worked as a postdoctoral fellow at Los Alamos National Laboratory, US (2008–2011). Currently, she is an associate professor at the Department of Chemistry and Center for Nano and Micro Mechanics of Tsinghua University. Her research interest is the synthesis of carbon materials and their applications in flexible sensors and wearable electronics.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jian, M., Wang, C., Wang, Q. et al. Advanced carbon materials for flexible and wearable sensors. Sci. China Mater. 60, 1026–1062 (2017). https://doi.org/10.1007/s40843-017-9077-x

Download citation

Keywords

  • carbon materials
  • flexible sensors
  • wearable electronics
  • carbon nanotubes
  • graphene