Skip to main content
Log in

Employing ZnS as a capping material for PbS quantum dots and bulk heterojunction solar cells

采用ZnS作为PbS量子点包覆材料及其体相太阳电池研究

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Formation of bulk heterojunctions by incorporating colloidal quantum dots into a mesoporous substrate is anticipated to yield efficient charge collection and complete light absorption. However, it is still challenging in view of the bulky nature of the colloidal quantum dots and the ex situ deposition route. In this study, the feasibility of employing ZnS as a capping material for PbS quantum dots is dissected by carefully designed control experiments, with reference to the formation of bulk heterojunctions by successive ionic layer adsorption and reaction (SILAR) at ambient conditions. The results reveal that the underlying ZnS layer facilitates the PbS deposition by an ion exchange process, while the overlaying ZnS layer tends to cover the PbS in a manner similar to a physical stacking process. Therefore, PbS quantum dots capped with amorphous ZnS are developed with the SILAR technique, which could be used to fill up the mesoporous substrates and thus construct bulk heterojunctions. The hole collection is the limiting factor of such bulk heterojunction solar cells, as demonstrated by inserting a conductive polymer layer in the control devices. Further development of the quantum dot system is discussed in consideration of the fundamental issues presented in this study.

摘要

将胶体量子点引入到介孔基体中形成体相异质结预期能够产生高效的电荷收集和完全的光吸收. 然而, 鉴于胶体量子点个体体积较大和薄膜异位生长的特性, 形成这样的异质结结构仍然存在巨大挑战. 本论文针对此问题, 通过严谨的实验设计, 分析了采用连续离子层吸附反应法(SILAR)以ZnS作为PbS量子点包覆材料的可行性. 实验结果表明底层ZnS通过离子交换的方式促进PbS的沉积, 而顶层ZnS趋于通过物理堆垛的方式覆盖PbS, 进而形成非晶态ZnS包覆的PbS量子点结构. 该方法可用以填充介孔基体而形成体相异质结结构. 在该体相异质结器件中加入导电有机物的研究表明该体系太阳电池受限于空穴收集. 在此基础上, 讨论了该体系量子点太阳电池进一步提升的途径.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nozik AJ. Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots. Annu Rev Phys Chem, 2001, 52: 193–231

    Article  Google Scholar 

  2. Konstantatos G, Sargent EH. Nanostructured materials for photon detection. Nat Nanotech, 2010, 5: 391–400

    Article  Google Scholar 

  3. Semonin OE, Luther JM, Choi S, et al. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science, 2011, 334: 1530–1533

    Article  Google Scholar 

  4. Yang Z, Voznyy O, Liu M, et al. All-quantum-dot infrared lightemitting diodes. ACS Nano, 2015, 9: 12327–12333

    Article  Google Scholar 

  5. Li C, Lu Z, Zhang Q, et al. Confined growth of CdSe quantum dots in colloidal mesoporous silica for multifunctional nanostructures. Sci China Mater, 2015, 58: 481–489

    Article  Google Scholar 

  6. Hines MA, Scholes GD. Colloidal PbS nanocrystals with size-tunable near-infrared emission: observation of post-synthesis self-narrowing of the particle size distribution. Adv Mater, 2003, 15: 1844–1849

    Article  Google Scholar 

  7. Talapin DV, Murray CB. PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors. Science, 2005, 310: 86–89

    Article  Google Scholar 

  8. Law M, Luther JM, Song Q, et al. Structural, optical, and electrical properties of PbSe nanocrystal solids treated thermally or with simple amines. J Am Chem Soc, 2008, 130: 5974–5985

    Article  Google Scholar 

  9. Luther JM, Law M, Song Q, et al. Structural, optical, and electrical properties of self-assembled films of PbSe nanocrystals treatedwith 1, 2-ethanedithiol. ACS Nano, 2008, 2: 271–280

    Article  Google Scholar 

  10. Graetzel M, Janssen RAJ, Mitzi DB, et al. Materials interface engineering for solution-processed photovoltaics. Nature, 2012, 488: 304–312

    Article  Google Scholar 

  11. Tang J, Kemp KW, Hoogland S, et al. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat Mater, 2011, 10: 765–771

    Article  Google Scholar 

  12. Ip AH, Thon SM, Hoogland S, et al. Hybrid passivated colloidal quantum dot solids. Nat Nanotech, 2012, 7: 577–582

    Article  Google Scholar 

  13. Ning Z, Voznyy O, Pan J, et al. Air-stable n-type colloidal quantum dot solids. Nat Mater, 2014, 13: 822–828

    Article  Google Scholar 

  14. Lan X, Voznyy O, Kiani A, et al. Passivation using molecular halides increases quantum dot solar cell performance. Adv Mater, 2016, 28: 299–304

    Article  Google Scholar 

  15. Lee JS, Kovalenko MV, Huang J, et al. Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays. Nat Nanotech, 2011, 6: 348–352

    Article  Google Scholar 

  16. Vogel R, Pohl K, Weller H. Sensitization of highly porous, polycrystalline TiO2 electrodes by quantum sized CdS. Chem Phys Lett, 1990, 174: 241–246

    Article  Google Scholar 

  17. Tian J, Shen T, Liu X, et al. Enhanced performance of PbS-quantum-dot-sensitized solar cells via optimizing precursor solution and electrolytes. Sci Rep, 2016, 6: 23094

    Article  Google Scholar 

  18. Ren F, Li S, He C. Electrolyte for quantum dot-sensitized solar cells assessed with cyclic voltammetry. Sci China Mater, 2015, 58: 490–495

    Article  Google Scholar 

  19. Rühle S, Shalom M, Zaban A. Quantum-dot-sensitized solar cells. Chem Phys Chem, 2010, 11: 2290–2304

    Google Scholar 

  20. Pattantyus-Abraham AG, Kramer IJ, Barkhouse AR, et al. Depleted-heterojunction colloidal quantum dot solar cells. ACS Nano, 2010, 4: 3374–3380

    Article  Google Scholar 

  21. Etgar L, Moehl T, Gabriel S, et al. Light energy conversion by mesoscopic PbS quantum dots/TiO2 heterojunction solar cells. ACS Nano, 2012, 6: 3092–3099

    Article  Google Scholar 

  22. O'Regan B, Graetzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353: 737–740

    Article  Google Scholar 

  23. Lee MM, Teuscher J, Miyasaka T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012, 338: 643–647

    Article  Google Scholar 

  24. Barkhouse DAR, Debnath R, Kramer IJ, et al. Depleted bulk heterojunction colloidal quantum dot photovoltaics. Adv Mater, 2011, 23: 3134–3138

    Article  Google Scholar 

  25. Kramer IJ, Zhitomirsky D, Bass JD, et al. Ordered nanopillar structured electrodes for depleted bulk heterojunction colloidal quantum dot solar cells. Adv Mater, 2012, 24: 2315–2319

    Article  Google Scholar 

  26. Lan X, Bai J, Masala S, et al. Self-assembled, nanowire network electrodes for depleted bulk heterojunction solar cells. Adv Mater, 2013, 25: 1769–1773

    Article  Google Scholar 

  27. Sun L, Koh ZY, Wang Q. PbS quantum dots embedded in a ZnS dielectric matrix for bulk heterojunction solar cell applications. Adv Mater, 2013, 25: 4598–4604

    Article  Google Scholar 

  28. Sun L, Wang Q. PbS quantum dots capped with amorphous ZnS for bulk heterojunction solar cells: the solvent effect. ACS Appl Mater Interfaces, 2014, 6: 14239–14246

    Article  Google Scholar 

  29. Sun L, Huang Y, Anower Hossain M, et al. Fabrication of TiO2/CuSCN bulk heterojunctions by profile-controlled electrodeposition. J Electrochem Soc, 2012, 159: D323–D327

    Article  Google Scholar 

  30. Kavan L, Grätzel M. Highly efficient semiconducting TiO2 photoelectrodes prepared by aerosol pyrolysis. Electrochim Acta, 1995, 40: 643–652

    Article  Google Scholar 

  31. Ito S, Murakami TN, Comte P, et al. Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films, 2008, 516: 4613–4619

    Article  Google Scholar 

  32. Hyun BR, Zhong YW, Bartnik AC, et al. Electron injection from colloidal PbS quantum dots into titanium dioxide nanoparticles. ACS Nano, 2008, 2: 2206–2212

    Article  Google Scholar 

  33. Buhbut S, Itzhakov S, Tauber E, et al. Built-in quantum dot antennas in dye-sensitized solar cells. ACS Nano, 2010, 4: 1293–1298

    Article  Google Scholar 

  34. Williams KJ, Tisdale WA, Leschkies KS, et al. Strong electronic coupling in two-dimensional assemblies of colloidal PbSe quantum dots. ACS Nano, 2009, 3: 1532–1538

    Article  Google Scholar 

  35. Usami A. Theoretical study of application of multiple scattering of light to a dye-sensitized nanocrystalline photoelectrichemical cell. Chem Phys Lett, 1997, 277: 105–108

    Article  Google Scholar 

  36. Nishimura S, Abrams N, Lewis BA, et al. Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals. J Am Chem Soc, 2003, 125: 6306–6310

    Article  Google Scholar 

  37. Wolcott A, Doyeux V, Nelson CA, et al. Anomalously large polarization effect responsible for excitonic red shifts in PbSe quantum dot solids. J Phys Chem Lett, 2011, 2: 795–800

    Article  Google Scholar 

  38. Kumar A, Jakhmola A, Chaudhary V. Synthesis and photophysics of colloidal ZnS/PbS/ZnS nanocomposites—an analysis of dynamics of charge carriers. J Photochem Photobio A-Chem, 2009, 208: 195–202

    Article  Google Scholar 

  39. Wright K, Watson GW, Parker SC, et al. Simulation of the structure and stability of sphalerite (ZnS) surfaces. Am Miner, 1998, 83: 141–146

    Article  Google Scholar 

  40. Balantseva E, Berlier G, Camino B, et al. Surface properties of ZnS nanoparticles: a combined DFT and experimental study. J Phys Chem C, 2014, 118: 23853–23862

    Article  Google Scholar 

  41. Mohammad SN. Thermodynamic imbalance, surface energy, and segregation reveal the true origin of nanotube synthesis. Adv Mater, 2012, 24: 1262–1275

    Article  Google Scholar 

  42. El-Ballouli AO, Alarousu E, Bernardi M, et al. Quantum confinement-tunable ultrafast charge transfer at the PbS quantum dot and phenyl-C61-butyric acid methyl ester interface. J Am Chem Soc, 2014, 136: 6952–6959

    Article  Google Scholar 

  43. Sun L, Zhang S, Wang X, et al. A novel parallel configuration of dye-sensitized solar cells with double-sided anodic nanotube arrays. Energy Environ Sci, 2011, 4: 2240–2248

    Article  Google Scholar 

  44. Zhao X, Huang J, Wang Y, et al. Interdigitated CuS/TiO2 nanotube bulk heterojunctions achieved via ion exchange. Electrochim Acta, 2016, 199: 180–186

    Article  Google Scholar 

  45. Lu N, Su Y, Li J, et al. Fabrication of quantum-sized CdS-coated TiO2 nanotube array with efficient photoelectrochemical performance using modified successive ionic layer absorption and reaction (SILAR) method. Sci Bull, 2015, 60: 1281–1286

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidong Sun  (孙立东).

Additional information

Lidong Sun received his PhD degree in 2012 fromNanyang TechnologicalUniversity, Singapore. Thereafter, heworked as a postdoctoral research fellow at the Department ofMaterials Science and Engineering, National University of Singapore. He is currently an assistant professor at the School of Materials Science and Engineering, Chongqing University. His research interests include the synthesis of nanostructured materials and their application in energy conversion devices.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L. Employing ZnS as a capping material for PbS quantum dots and bulk heterojunction solar cells. Sci. China Mater. 59, 817–824 (2016). https://doi.org/10.1007/s40843-016-5138-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-016-5138-2

Keywords

Navigation